

ENGINEERING COMMITTEE
Digital Video Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 104 2013

Automation System to Compression System

Communications Applications Program Interface (API)

ii

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards are intended to serve the
public interest by providing specifications, test methods and procedures that promote uniformity
of product, interchangeability and ultimately the long term reliability of broadband
communications facilities. These documents shall not in any way preclude any member or non-
member of SCTE from manufacturing or selling products not conforming to such documents, nor
shall the existence of such standards preclude their voluntary use by those other than SCTE
members, whether used domestically or internationally.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the Standards.
Such adopting party assumes all risks associated with adoption of these Standards, and accepts
full responsibility for any damage and/or claims arising from the adoption of such Standards.

Attention is called to the possibility that implementation of this standard may require the use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. SCTE shall not
be responsible for identifying patents for which a license may be required or for conducting
inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of
this standard have been requested to provide information about those patents and any related
licensing terms and conditions. Any such declarations made before or after publication of this
document are available on the SCTE web site at http://www.scte.org.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc. 2013

140 Philips Road
Exton, PA 19341

http://www.scte.org/

iii

 TABLE OF CONTENTS
AUTOMATION SYSTEM – COMPRESSION SYSTEM COMMUNICATIONS API 1

1.0 SCOPE ... 1

2.0 DEFINITIONS AND ACRONYMS .. 1

3.0 NORMATIVE REFERENCES ... 6

3.1 SCTE REFERENCES .. 7
3.2 STANDARDS FROM OTHER ORGANIZATIONS ... 7

4.0 INFORMATIVE REFERENCES ... 7

4.1 SCTE REFERENCES .. 8
4.2 STANDARDS FROM OTHER ORGANIZATIONS ... 8
4.3 PUBLISHED MATERIALS ... 9

5.0 OVERVIEW .. 9

6.0 DATA COMMUNICATIONS ... 13

6.1 CONCERNING DATA COMMUNICATIONS (INFORMATIVE) ... 13
6.2 DATA COMMUNICATIONS REQUIREMENTS FOR THIS API (NORMATIVE) 13
6.3 CONVEYANCE QUALITY-OF-SERVICE CONSIDERATIONS (INFORMATIVE) 14
6.4 UNI-DIRECTIONAL SYSTEM CONSIDERATIONS (INFORMATIVE)....................................... 14
6.5 PROXY DEVICES (NORMATIVE) .. 15

7.0 MESSAGE FORMATS .. 15

7.1 TERMINOLOGY (INFORMATIVE) .. 15
7.2 MESSAGE STRUCTURES (NORMATIVE) ... 16
7.3 OPERATION TYPES (NORMATIVE) ... 24
7.4 CONVENTIONS AND REQUIREMENTS .. 30

8.0 AUTOMATION SYSTEM TO INJECTOR COMMUNICATION 31

8.1 INITIALIZATION .. 31
8.2 ALIVE (“HEARTBEAT”) COMMUNICATIONS .. 33
8.3 SPLICE REQUESTS .. 35
8.4 ENCRYPTION SUPPORT (NORMATIVE) .. 42
8.5 COMPONENT MODE SUPPORT .. 45
8.6 RESPONSE MESSAGES .. 46
8.7 SCTE 35 SPLICE_SCHEDULE() SUPPORT REQUESTS ... 50
8.8 MISCELLANEOUS REQUESTS .. 56

9.0 PAMS TO THE AUTOMATION SYSTEM COMMUNICATIONS 66

9.1 SYSTEM DESIGN PHILOSOPHY .. 66
9.2 PAMS FUNCTIONALITY ... 67
9.3 SERVICE CONTINUITY .. 69

iv

9.4 SYSTEM INITIALIZATION MESSAGES ... 69
9.5 INJECTOR SERVICE NOTIFICATION .. 71
9.6 FAILURE NOTIFICATION MESSAGES (DEVICE OR COMMUNICATIONS) 75
9.7 PAMS TO AS PERMANENT “LINK ALIVE” MESSAGES.. 77
9.8 PAMS TO AS COMMON ELEMENTS ... 78

10.0 PAMS TO INJECTOR COMMUNICATIONS (INFORMATIVE) 79

10.1 THE PAMS IMPLEMENTATION ... 80
10.2 INJECTOR PROVISIONING .. 80
10.3 PAMS STRUCTURE .. 80
10.4 SUPPORT OF MULTIPLE DPI PIDS ... 80

11.0 COMMON ELEMENTS .. 81

11.1 VALUES OF SPLICE_EVENT_ID USED IN THIS INTERFACE ... 81
11.2 VALUES OF UNIQUE_PROGRAM_ID USED IN THIS INTERFACE .. 81
11.3 MINIMUM PRE-ROLL TIME SUPPORTED BY THIS INTERFACE ... 81
11.4 TIME() DEFINITION ... 82
11.5 TIMESTAMP() DEFINITION ... 83

12.0 SYSTEM ARCHITECTURE AND PROVISIONING (INFORMATIVE) 85

12.1 ONE WAY PROTOCOL – AUTOMATION SYSTEM TO INJECTOR .. 85
12.2 TWO WAY PROTOCOL – AUTOMATION SYSTEM TO INJECTOR ONLY 96
12.3 TWO WAY PROTOCOL – AUTOMATION SYSTEM TO INJECTOR WITH PAMS 116

13.0 RESULT CODES (NORMATIVE) ... 128

APPENDIX A: TCP/IP CONVEYANCE ... 131

APPENDIX B: ANSI/TIA/EIA-232-F CONVEYANCE .. 131

B.1 THE BASIC LINK LAYER SYNTAX ... 132
B.2 THE ESCAPE SEQUENCE ... 133

APPENDIX C: DIGITAL VIDEO SYSTEM CONVEYANCE (INFORMATIVE) 133

APPENDIX D: ANALOG VIDEO SYSTEM CONVEYANCE .. 133

v

LIST OF FIGURES

FIGURE 5-1 – SCTE 35 OVERALL SYSTEM BLOCK DIAGRAM WITH BI-

DIRECTIONAL DATA COMMUNICATIONS .. 11
FIGURE 5-2 – SCTE 35 OVERALL SYSTEM BLOCK DIAGRAM WITH UNI-

DIRECTIONAL DATA COMMUNICATIONS .. 12
FIGURE 8-1 - MULTIPLE_OPERATION_MESSAGE() TO SCTE 35 SECTION FIELD

MAPPING (INFORMATIVE) .. 41
FIGURE 12-1 - ONE-WAY PROTOCOL EMBEDDED IN VIDEO WITH INTEGRATED

INJECTOR .. 86
FIGURE 12-2 - ONE-WAY PROTOCOL WITH MULTIPLE AS TO EXTERNAL INJECTOR

... 87
FIGURE 12-3 - ONE-WAY FLOW DIAGRAM WITH DELAYED PROCESSING 94
FIGURE 12-4 - ONE-WAY FLOW DIAGRAM FOR EARLY RETURN 95
FIGURE 12-5 - TWO-WAY BLOCK DIAGRAM WITH INTERNAL INJECTOR 96
FIGURE 12-6 - TWO-WAY BLOCK DIAGRAM WITH EXTERNAL INJECTOR 97
FIGURE 12-7 - TWO-WAY FLOW DIAGRAM FOR INITIALIZATION 109
FIGURE 12-8 - TWO-WAY FLOW DIAGRAM WITH DELAYED PROCESSING 110
FIGURE 12-9 - TWO-WAY FLOW DIAGRAM WITH IMMEDIATE PROCESSING 111
FIGURE 12-10 – TWO-WAY FLOW DIAGRAM FOR EARLY RETURN 112
FIGURE 12-11 - TWO-WAY CANCELLATION BEFORE BEING PROCESSED 113
FIGURE 12-12 - TWO-WAY CANCELLATION AFTER BEING PROCESSED................... 114
FIGURE 12-13 - TWO-WAY FLOW DIAGRAM CANCEL AFTER SPLICE POINT 115
FIGURE 12-14 - TWO-WAY BLOCK DIAGRAM WITH INTERNAL INJECTOR 117
FIGURE 12-15 - TWO-WAY BLOCK DIAGRAM WITH EXTERNAL INJECTOR 118
FIGURE 12-16 – AS/PAMS FLOW DIAGRAM FOR INITIALIZATION 123
FIGURE 12-17 - PAMS TWO-WAY INITIALIZATION OF A PERMANENT CONNECTION

... 124
FIGURE 12-18 - PAMS DETECTS AN INJECTOR FAILURE ... 125
FIGURE 12-19 - AS DETECTS AN INJECTOR FAILURE ... 126
FIGURE 12-20 - INJECTOR SOCKET FAILED AND RECOVERED.................................... 127

LIST OF TABLES

TABLE 2-1 - TERMS AND ACRONYMS .. 1
TABLE 2-2 - WIDELY USED TERMS AND ACRONYMS (INFORMATIVE) 6
TABLE 7-1 - SINGLE OPERATION MESSAGE ... 19
TABLE 7-2 - MULTIPLE OPERATION MESSAGE ... 22
TABLE 7-3 - OPID ASSIGNED VALUES AND MEANINGS FOR

SINGLE_OPERATION_MESSAGES ... 25

vi

TABLE 8-1 - INIT_REQUEST_DATA ... 32
TABLE 8-2 - INIT_RESPONSE_DATA ... 32
TABLE 8-3 - ALIVE_REQUEST_DATA ... 34
TABLE 8-4 - ALIVE_RESPONSE_DATA ... 34
TABLE 8-5 - SPLICE_REQUEST_DATA .. 35
TABLE 8-6 - SPLICE_INSERT_TYPE ASSIGNED VALUES .. 37
TABLE 8-8 - ENCRYPTED_DPI_REQUEST_DATA .. 43
TABLE 8-9 - UPDATE_CONTROLWORD_DATA .. 44
TABLE 8-10 - DELETE_CONTROLWORD_DATA ... 45
TABLE 8-11 - COMPONENT_MODE_DPI_REQUEST_DATA .. 46
TABLE 8-12 - GENERAL_RESPONSE_DATA .. 47
TABLE 8-14 - INJECT_RESPONSE DATA ... 48
TABLE 8-16 - INJECT_COMPLETE RESPONSE DATA ... 49
TABLE 8-18 - START_SCHEDULE_DOWNLOAD_REQUEST_DATA 51
TABLE 8-19 - SCHEDULE_DEFINITION_DATA .. 53
TABLE 8-20 - SPLICE_SCHEDULE COMMAND TYPE ASSIGNED VALUES 53
TABLE 8-21 - SCHEDULE_COMPONENT_REQUEST_MODE ... 54
TABLE 8-22 - TRANSMIT_SCHEDULE_REQUEST_DATA .. 55
TABLE 8-23 - TIME_SIGNAL_REQUEST_DATA ... 56
TABLE 8-24 - SPLICE_NULL_REQUEST_DATA ... 57
TABLE 8-25 - INJECT_SECTION_DATA_REQUEST ... 58
TABLE 8-26 - INSERT_AVAIL_DESCRIPTOR_REQUEST_DATA 59
TABLE 8-27 - INSERT_DESCRIPTOR_REQUEST_DATA ... 60
TABLE 8-28 - INSERT_DTMF_DESCRIPTOR_REQUEST_DATA 61
TABLE 8-30 - PROPRIETARY_COMMAND_REQUEST_DATA .. 64
TABLE 8-31 - INSERT_TIER_DATA ... 65
TABLE 9-1 - CONFIG_REQUEST_DATA .. 69
TABLE 9-2 - CONFIG_RESPONSE_DATA .. 71
TABLE 9-3 - PROVISIONING_REQUEST_DATA ... 73
TABLE 9-5 - FAULT_REQUEST_DATA .. 76
TABLE 9-7 - AS_ALIVE_REQUEST_DATA .. 78
TABLE 9-8 - AS_ALIVE_RESPONSE_DATA .. 78
TABLE 9-9 - INJECTOR_COMPONENT_LIST() ... 79
TABLE 11-1 - TIME() .. 82
TABLE 11-2 - TIMESTAMP() .. 83
TABLE 12-1 – SUPPORTED PROTOCOL MESSAGES ... 90
TABLE 12-2 – UNSUPPORTED PROTOCOL MESSAGES ... 91
TABLE 12-3 – OPTIONAL PROTOCOL MESSAGES .. 92
TABLE 12-4 – UNUSED PAMS PROTOCOL MESSAGES ... 93
TABLE 12-5 – SUPPORTED PROTOCOL MESSAGES ... 103
TABLE 12-6 – SUPPORTED PROTOCOL MESSAGES (CON’T) ... 105
TABLE 12-7 – OPTIONAL PROTOCOL MESSAGES .. 107
TABLE 12-8 – UNUSED PAMS PROTOCOL MESSAGES ... 108
TABLE 13-1 - RESULT CODES ... 128
TABLE B-1 - SERIAL_LINKLAYER STRUCTURE ... 132

vii

This page intentionally left blank.

1

AUTOMATION SYSTEM – COMPRESSION SYSTEM COMMUNICATIONS API

1.0 SCOPE

This standard defines the Communications API between an Automation System and the
associated Compression System that will insert SCTE 35 private sections into the outgoing
Transport Stream. This standard serves as a companion to both SCTE 35 and SCTE 30.

2.0 DEFINITIONS AND ACRONYMS

Throughout this document, the terms used have specific meanings. Because some of the terms
that are defined in ISO/IEC 13818-1 have very specific technical meanings, the reader is referred
to the original source for their definition. For terms used in this document, brief definitions are
given below.

Table 2-1 - Terms and Acronyms

TERM
DESCRIPTION

API Application Program Interface. A mechanism whereby one software
system asks another software system to perform a service.

API Connection A communications connection between an Automation System and an
Injector for transferring API messages.

AS Automation System

ATSC Advanced Television Systems Committee

Automation System A control system for a program origination facility which controls
operation of the production facilities and devices.

Avail Time space provided to cable operators by cable programming services
during a program for use by the CATV operator; the time is usually
sold to local advertisers or used for channel self promotion.

Basic A category of Request or Response operation supported by this API.
See Section 7.3.

backoff A mechanism, commonly used in data communications, to randomize
the interval between retries.

BER Abbreviation for bit-error rate.

2

TERM
DESCRIPTION

bslbf Bit string, left bit first, where “left” is the order in which bit strings are
written in the Standard. Bit strings are written as a string of 1s and 0s
within single quote marks, e.g. ‘1000 0001’. Blanks within a bit string
are for ease of reading and have no significance. (See ISO/IEC 13818-
1 [3]).

Component Splice
Mode

A mode of the splice_info_section whereby the program_splice_flag is
set to ‘0’ and indicates that each PID/component that is intended to be
spliced will be listed separately by the syntax that follows. Components
not listed in the splice_info_section are not to be spliced.

Control A category of Request operation supported by this API. See Section
7.3.

Control Word A multiple key value used by the encryption mechanisms specified in
SCTE 35 [1].

CRC Cyclic Redundancy Check. A method to verify the integrity of a
transmitted message.

CW
Abbreviation for Control Word.

dB Abbreviation for decibel.

DCS Digital Compression System

deferred processing
mode

Processing of a multiple_operation_message() when the value of
time_type within timestamp() is non-zero (See Section 11.5.1).

DES
Data Encryption Standard. A method for encrypting data with
symmetric keys.

DPI Digital Program Insertion

DPI PID
A single PID carrying SCTE 35 [1] splice_info_sections.

Event A splice event or a viewing event as defined below.

GPI
General Purpose Interface, commonly used to source or sink contact
closures in video facilities.

HANC Horizontal ANCillary data space in digital video streams

HD-SDI Abbreviation for High Definition Serial Digital Interface (see SMPTE
292)

3

TERM
DESCRIPTION

IJ Abbreviation for Injector.

immediate mode Processing of a multiple_operation_message() when the value of
time_type within timestamp() is 0.

Injector
A device or combination of devices within the DCS capable of
converting SCTE 104 message data into a SCTE 35 [1]
splice_info_section(), including a program-specific PCR splice time
value, if necessary, and multiplexing the resulting section data along
with the other program components into the eventual MPEG SPTS or
MPTS.

Injector Instance
A specific instance of an Injector, constrained to place a single DPI PID
into a single MPEG program in a single Transport Stream.

In Point
A point in the stream, suitable for entry, that lies on an access unit
boundary.

ISO
Abbreviation for International Organization for Standardization.

ITU
Abbreviation for International Telecommunications Union.

Message
In the context of this document a message is a single communication
between the Automation System and the Compression System or
between the Automation System and the PAMS. A message may
contain one or more operations.

MPTS
A Multi Program Transport Stream.

MSB Abbreviation for Most Significant Bit.

NABTS Abbreviation for North American Basic Teletext Specification (see EIA
516 [5])

Normal A category of Request operation supported by this API. See Section
7.3.

Out Point
A point in the stream, suitable for exit, that lies on an access unit
boundary.

OSI
Abbreviation for Open Systems Interconnection.

PAMS
Abbreviation for Provisioning and Alarm Management System (see
Section 5.0).

PID
Packet identifier; a unique 13-bit value used to identify elementary
streams of a program in a single or multi-program Transport Stream.
(See ISO/IEC 13818-1 [3]).

4

TERM
DESCRIPTION

PID stream
A stream of packets with the same PID within a transport stream.

PMT
Program Map Table. (See ISO/IEC 13818-1 [3]).

port
See “socket.” Refers to a bit-field defined in a TCP header. May also
refer to a specific physical connector mounted on a device.

PPP
Point-to-Point Protocol. Defined in RFC 1661.

Presentation Time
The time that a presentation unit is presented in the system target
decoder.

Program
A collection of video, audio, and data PID streams which share a
common program number within a SPTS or MPTS.

PTS Presentation Time Stamp. (See ISO/IEC 13818-1 [3]).

Registration
Descriptor

An MPEG-2 (ISO/IEC 13818-1 [3]) construct to uniquely and
unambiguously identify formats of private data. As used in this
context, it is carried in the PMT of a program to indicate the program’s
compliance with SCTE 35 [1]. (See ISO/IEC 13818-1 [3] Section
2.6.8).

Request
A single directive, from either the Automation System, the Injector, or
the PAMS, to another portion of the overall system. “Request” and
“Command” are used interchangeably. A request is always carried
within a message. A request is normally answered by a response
message.

reserved
The term “reserved”, when used in the clauses defining the coded bit
stream, indicates that the value may be used in the future for extensions
to the standard. Unless otherwise specified in this standard, all reserved
bits shall be set to ‘1’.

Response A reply message to a request directive from the other portion of the
system. Responses are made by the Automation System, the
Compression System, and the PAMS in reply to requests. A response
is always carried within a single_operation message.

SDI
Abbreviation for Serial Digital Interface (see SMPTE 259M)

Section
A private_section structure as defined by ISO/IEC 13818-1 [3] and (in
this case) SCTE 35 [1]. As used here, the term is usually
“splice_info_section”. See SCTE 35 [1] Section 6.2 and ISO/IEC
13818-1 [3], Section 2.4.4.10.

5

TERM
DESCRIPTION

Simple Profile
A defined subset of the Automation to Injector messages in this API
which supports all basic splicing functionality while excluding
schedules, encryption, and component mode. An implementer may
choose to support only the Simple Profile or features beyond it. The
implementer can then describe their implementation in common terms
(for example “Simple Profile plus encryption”).

SNR
Abbreviation for signal to noise ratio.

socket
A TCP/IP mechanism used for connection-oriented communications.
Sometimes also called “port” in an interchangeable manner.

Splice Event
An opportunity to splice one or more PID streams.

Splice_info_section Basic SCTE 35 [1] structure for carrying DPI commands in a TS to
downstream equipment. See SCTE 35 [1] Section 6.2.

Splice Immediate
Mode

A mode of the splice_info_section whereby the splicing device shall
choose the nearest opportunity in the stream, relative to the
splice_info_table, to splice. When not in this mode, the
splice_info_section gives a “PTS_time”, which is a presentation time,
for the intended splicing moment.

Splice Point
A point in a PID stream that is either an Out Point or an In Point.

SPTS
A Single Program Transport Stream.

Supplemental A category of request operation supported by this API. See Section 7.3.

TS
Abbreviation for Transport Stream.

uimsbf
Unsigned integer, most significant bit first. (See ISO/IEC 13818-1 [3]).

UTC
“Universel Temps Coordonné” in French. Coordinated Universal Time
in English.

VANC
Vertical ANCillary data space in digital video streams (See SMPTE
291 [9]).

VITC
Vertical Interval Time Code

WST
World System Teletext. (See ITU-R BT.653-3 [4])

6

In addition to the precisely defined terms and acronyms in Table 2-1, there are many widely used,
but less precisely defined terms related to Digital Program Insertion. A table of these appears
below.

Table 2-2 - Widely Used Terms and Acronyms (Informative)

TERM
DESCRIPTION

Analog Cue Tone In an analog system, a signal which is usually either a sequence of
DTMF tones or a contact closure that denotes to ad insertion equipment
that an advertisement avail is about to begin or end.

Break Avail or an actual insertion in progress.

Command A single directive from the Automation System to the Compression
System. A command is always carried within a multiple_operation
message. This term is also used to specify specific SCTE 35 [1]
commands.

Cueing Message
See splice_info_section. A term used in SCTE 35 [1]; a “Cueing
Message” is a Cueing Section in this document.

DPI Cue Message
See splice_info_section. A term used in SCTE 35 [1]; a “DPI Cue
Message” is a splice_info_section in this document.

Digital Cue Tone Widely used term to refer to an SCTE 35 [1] splice_info_section().

Long Form
Insertion

Refers to insertions of material with a duration generally greater than
10 minutes, i.e. program length material

Short Form
Insertion

Refers to insertions of material with a duration generally less than 10
minutes, i.e. advertising or promotional material. As of this writing,
the primary use of DPI technology.

Spot
Term for the contents of an advertisement, sometimes also used to refer
to an avail.

Viewing Event
A television program or a span of compressed material within a
service; as opposed to a splice event, which is a point in time.

3.0 NORMATIVE REFERENCES

The following documents contain provisions, which, through reference in this text, constitute
provisions of this standard. At the time of publication, the editions indicated were valid. All

7

standards are subject to revision, and parties to agreement based on this standard are encouraged
to investigate the possibility of applying the most recent editions of the documents listed below.

3.1 SCTE References

1. SCTE 35 2013, Digital Program Insertion Cueing Message for Cable, Society of
Cable Telecommunications Engineers (SCTE), 2013. (Also standardized as ITU-T
Recommendation J.181).

2. ANSI/SCTE 30 2009, Digital Program Insertion Splicing API, Society of Cable
Telecommunications Engineers (SCTE), 2009.

3.2 Standards from other Organizations

3. ISO/IEC 13818-1; Information Technology ---- Generic Coding of Moving Pictures
and Associated Audio Information: Systems, International Organization for
Standardization/International Electrotechnical Commission, 2007. (Also
standardized as ITU-T Recommendation H.222.0).

4. ITU-R BT.653-3, Teletext Systems, International Telecommunications Union (ITU),
Radiocommunication Assembly, 1998.

5. ANSI/EIA-516, North American Basic Teletext Specification (NABTS), Electronic
Industries Association (EIA), 1988. (Defined in BT.653-3 [4] as “System C”). (For
the purposes of this document, only Chapters 1, 2, 3, and 4 are normative. Chapters 5
through 8 are informative).

6. ETSI ETS 300 706, Enhanced Teletext specification, European Telecommunications
Standards Institute (ETSI), 2003. (Defined in BT.653-3 [4] as “System B”).

7. ETSI ETS 300 708, Data transmission within Teletext, European
Telecommunications Standards Institute (ETSI), 2003.

8. SMPTE 334-1, Vertical Ancillary Data Mapping of Caption Data and Other Related
Data, Society of Motion Picture and Television Engineers, 2007.

9. SMPTE 291, Ancillary Data Packet and Space Formatting, Society of Motion
Picture and Television Engineers, 2010.

10. SMPTE 2010, Vertical Ancillary Data Mapping of ANSI/SCTE 104 Messages,
Society of Motion Picture and Television Engineers, 2008.

4.0 INFORMATIVE REFERENCES

The following documents may provide valuable information to the reader but are not required
when complying with this standard.

8

4.1 SCTE References

1. ANSI/SCTE 67 2010, Digital Program Insertion Cueing Message for Cable --
Interpretation for SCTE 35, Society of Cable Telecommunications Engineers
(SCTE), 2010.

4.2 Standards from other Organizations

2. SMPTE 259M, 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals ----
Serial Digital Interface, Society of Motion Picture and Television Engineers, 2008.

3. SMPTE 312M, Splice Points for MPEG-2 Transport Streams, Society of Motion
Picture and Television Engineers, 2001.

4. SMPTE 12M-1, Time and Control Code, Society of Motion Picture and Television
Engineers, 2008.

5. SMPTE EG 40, Conversion of Time Values Between SMPTE 12M Time Code,
MPEG-2 PCR Time Base and Absolute Time, Society of Motion Picture and
Television Engineers, 2002.

6. ISO/IEC 11172-3, Information Technology ---- Coding of Moving Pictures and
Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s, Part 3: Audio,
International Organization for Standardization/International Electrotechnical
Commission, 1993.

7. [reserved].

8. ATSC Doc. A/52:2010, Digital Audio Compression Standard (AC-3, E-AC-3),
Advanced Television Systems Committee, 2010.

9. ETSI TR 101 233, Code of practice for allocation of services in the Vertical Blanking
Interval (VBI), European Telecommunications Standards Institute (ETSI), 1998.

10. IETF RFC 793, Transmission Control Protocol, The Internet Society, 1981.

11. IETF RFC 2728, The Transmission of IP Over the Vertical Blanking Interval of a
Television Signal, The Internet Society, 1999.

12. ITU-T X.200, Open Systems Interconnection -- Basic Reference Model,
International Telecommunications Union (ITU), Telecommunication Standardization
Sector, 1994.

13. SMPTE 298, Universal Labels for Unique Identification of Digital Data, Society of
Motion Picture and Television Engineers, 2009.

14. SMPTE 330M, Unique Material Identifier (UMID), Society of Motion Picture and
Television Engineers, 2004.

9

15. ATSC A/57B, Program/Episode/Version Identification for ATSC transport, Revision
B, Advanced Television Systems Committee, 2008.

16. SMPTE RP168, Definition of Vertical Interval Switching Point for Synchronous
Video Switching, Society of Motion Picture and Television Engineers, 2009.

17. ANSI/EIA/TIA-250-C, Electrical Performance for Television Transmission Systems,
Electronic Industries Association (EIA), 1989.

18. ANSI/TIA/EIA-232-F, Interface Between Data Terminal Equipment and Data
Circuit-Terminating Equipment Employing Serial Binary Data Interchange,
Electronic Industries Association (EIA), 1997.

19. IETF RFC 1305, Network Time Protocol (Version 3), Specification, Implementation
and Analysis, The Internet Society, 1992.

20. IETF RFC 1661, The Point-to-Point Protocol (PPP), The Internet Society, 1994.

21. SMPTE 292, 1.5 Gb/s Signal / Data Serial Interface, Society of Motion Picture and
Television Engineers, 2008.

4.3 Published Materials

(None)

5.0 OVERVIEW

The block diagrams below (Figure 5-1 and Figure 5-2) are based on Figure 6-1 from SCTE 30
[2]. They show a single Automation System, a single Injector and a single splicer. In reality, the
Injector is part of an overall Digital Compression System (DCS), which includes several other
Injectors (for other channels), multiplexers, and usually conditional access. Typically this system
will include redundancy, to prevent a single device failure from forcing the system offline.
Splice_info_section injection may actually be done by encoders, multiplexers, or other devices.
As a result, the injecting device will be referred to in the rest of this document simply as an
“Injector.”

All of these components are under the watch of a master Provisioning and Alarm Management
System, or “PAMS”. The primary task of the PAMS is to monitor device health within the DCS,
to notify human operators of any failures, and to switch redundant units into service as directed
by the operator. The secondary task of the PAMS is to provide provisioning for the equipment
contained within the DCS. Provisioning is usually defined as setting service parameters for each
device. The Automation System, the Digital Compression System, and the PAMS are frequently
located at the program origination facility, sometimes referred to as the “uplink” facility.

Note that TCP/IP networks for use with this standard are intended as strictly private, closed
networks for the use of the Automation, Compression, and Splicing systems. As a result, latency
is not expected to be a major factor in system design. None of these should be connected to

10

either the commercial Internet or any other LAN or WAN without appropriate routing and
firewall systems in place to ensure exclusion of intrusive traffic, either planned (malicious) or
unplanned (accidental).

Latency in a moderately trafficked TCP/IP network should be much less than 1 video frame time
(33.37 ms for 30/1.001 Hz systems and 40 ms for 25 Hz systems). As a result, the use of time-
stamping is not mandatory, and thus is an optional portion of this API.

The following two end-to-end system block diagrams are intended as informative high-level
overviews of the components of systems compliant with this standard. The illustrate both bi-
directional (TCP/IP or serial) data communications, as well as uni-directional (video conveyed or
serial) data communications.

Actual system architectures are discussed in Section 12.0.

In addition to TCP/IP, this API also supports data communications through other physical layers,
such as uni-directional or bi-directional serial (ANSI/TIA/EIA-232-F) or uni-directional serial
digital video (VANC). SMPTE has standardized carriage in VANC in SMPTE 2010 [10].

11

Figure 5-1 – SCTE 35 Overall System Block Diagram
with Bi-directional Data Communications

TCP/IP
SOCKET

TCP/IP
SOCKET

Injector
PAMS

Automation
System

Baseband
Video/Audio MPEG-2 TS

Splicer

Server

Primary Multiplex

Insertion Multiplex

Output

Multiplex

Output
Channel

Primary
Channel

Insertion
Channel

SCTE 30
Network

Connection

Transmission
Path

Located at Cable Head-end

Network
Interface

or
Demodulator

Located at Origination Facility

TCP/IP
SOCKET

Located at Uplink (or
Origination Facility)

TCP/IP
SOCKET

Video/
Audio

Sources Automation
Control

Overall System Block Diagram (Informative)
(end-to-end)

Bi-directional Data Communications of API
Messages

DPI Trigger Messages
Carried by Bi-Directional

Data Comm.
(TCP/IP or Serial)

AS to PAMS
Provisioning and

Redundancy Messages
Carried by Bi-Directional

Data Comm.
(TCP/IP or Serial)

Network

Human
Operator

Human
Operator

Digital Compression System (DCS)

Provisioning
and Alarms

12

Figure 5-2 – SCTE 35 Overall System Block Diagram
with Uni-directional Data Communications

TCP/IP
SOCKET

Injector

Automation
System

Baseband
Video/Audio

MPEG-2 TS

Splicer

Server

Primary Multiplex

Insertion Multiplex

Output
Multiplex

Output
Channel

Primary
Channel

Insertion
Channel

SCTE 30
Network

Connection

Transmission
Path

Located at Cable Head-end

Network
Interface

or
Demodulator

Located at Origination Facility

Located at Uplink

Video/
Audio

Sources Automation
Control

DPI Trigger Messages
Carried in VANC

Overall System Block Diagram (Informative)
(end-to-end)

Uni-directional Data Communications of API
Messages

Human
OperatorPAMS

Digital Compression System (DCS)

Human
Operator

Provisioning
and Alarms

13

6.0 DATA COMMUNICATIONS

The data communications system for this Standard can be described according to the Open
Systems Interconnection (OSI) Basic Reference Model specified in ITU-T X.200. According to
this functional model, information and services may be delivered from device to device by
arranging the information into logical groupings or messages, delivering them to lower functional
layers for transmission and, after reception, reconstituting the information into the proper form
for use by the recipient.

6.1 Concerning Data Communications (Informative)

In what follows, the names of the layers are those adopted by the ISO and the ITU in ITU-T
X.200, Open Systems Interconnection (OSI) -- Basic Reference Model [Informative Reference
12].

Some of these names are also commonly used in broadcasting technology to express different
concepts. This particularly applies to the terms “network” and “link” and care must be taken to
avoid confusion. This is especially important to readers of this Standard, since concise usage of
terminology may confuse others who are less familiar with this Standard and the OSI Reference
Model.

Readers unfamiliar with the OSI Reference Model are referred to the many tutorial web sites
available which explain these concepts in detail. The layers of the Reference Model are: Layer
1: Physical; Layer 2: Link; Layer 3: Network; Layer 4: Transport; Layer 5: Session; Layer 6:
Presentation; and Layer 7: Application.

6.2 Data Communications Requirements for this API (Normative)

This Standard defines the Application, Presentation, and Session Layers of the OSI Basic
Reference Model and relies upon other well-defined Standards to provide the lower-level Layers
necessary to function.

The data communication requirements for this Standard are based on those of SCTE 30 [2],
which expects a high quality-of-service, bi-directional, connection-oriented, end-to-end reliable
communications system using TCP. These expectations should be understood as the norm for
this API. In this case, TCP over IP will provide the bottom 4 Layers of the OSI Basic Reference
Model.

In addition to the above normative data communications system requirements, Automation
System to Injector messages defined in this Standard may also be carried over a low noise, high
quality-of-service, bi-directional point-to-point communications systems consisting of
encapsulation within serial digital (SDI) video signal(s) in one or both directions (or a return path
of suitable bandwidth capable of carrying TCP segments per RFC 793 [Informative Reference
10]). Within SDI/HD-SDI video, the segments shall be carried in VANC per SMPTE 2010 [10].

14

A subset of the Automation System to Injector messages defined in this Standard may also be
carried over a low noise, high quality-of-service, uni-directional, point-to-point communications
system using encapsulation within a video signal. The physical conveyance shall be in VANC
per SMPTE 2010 [10] for serial digital component systems. In this case, those communications
methods will provide the bottom 4 Layers of the OSI Basic Reference Model. A full set of these
messages may be carried in VANC for a serial digital component system, however a subset of
them will not actually be used (see Section 12.1).

It is also possible to construct a high quality-of-service, connection-oriented, bi-directional
communications system with one direction conveyed within the video signal and responses via a
different path. Such a system will take careful engineering and may have some additional risks.
Such a system may be able to gracefully degrade to a standard uni-directional, connection-
oriented communications system upon loss of the return path

6.3 Conveyance Quality-of-Service Considerations (Informative)

The fundamental requirement for all modes of operation under this Standard is to provide high
quality of service to the API messages. For TCP/IP communications, this may seem obvious.
For video conveyance, the requirements are less obvious.

Serial digital component video must have a signal loss in a link of less than 30 dB (see SMPTE
259M, [Informative Reference 2]), which translates into a maximum bit-error rate of 2 x 10–7 or a
signal to noise ratio of better than 17.1 dB. This is actually marginal performance, since it
translates into an error per frame of video (most viewers will judge it noisy). Realistic
performance of a link should be a SNR of better than 20 dB (a BER of 8 x 10-14) which in
viewer’s terms is one error a day.

In analog video terms, this level of performance requires ANSI/EIA/TIA-250-C [Informative
Reference 9] “short haul” link performance, with a minimum analog signal-to-noise ratio of 57
dB.

It is recognized that all “real world” communications systems may be subject to periodic
degradation from external sources (“rain fade”) that temporarily add considerable noise to the
link. As a result, the conveyance requirements outlined in this document will endeavor to add
extra link margin to their message designs.

6.4 Uni-directional System Considerations (Informative)

The requirements for uni-directional conveyance in the video signal are reasonably straight-
forward. The messages will be inserted via an insertion unit designed for inserting signals in
video.

This Standard assumes correct delivery of each message. It must be understood that in a uni-
directional, video conveyed system, the Automation System may choose to operate in a “best
effort is OK” manner, and retransmit messages at least twice to ensure they have been completely
received. Such a system architecture may be desirable where the Digital Compression System is

15

located some distance away from the origination facilities (and hence, the Automation System)
and no return path can be provided.

6.5 Proxy Devices (Normative)

A Proxy Device is a device which accepts messages per this API (as either TCP/IP or bi-
directional serial data communications) and places the appropriate messages of this API into the
VANC area of the associated serial digital video supplied to the Injector per SMPTE 2010 [10].
Such a device should engage in all of the Automation System to Injector Initialization
“handshaking” specified in Section 8.1 of this Standard. Such handshaking should not be passed
to the Injector in VANC.

All other messages for the Injector should be passed in VANC, including the Alive (“heartbeat”)
messages specified in Section 8.2.

The Proxy Device should respond to all messages in lieu of actual responses from the Injector,
using (where appropriate) the proxy response code defined in Table 13-1.

In a uni-directional carriage in VANC, the Proxy Device implementation may choose to support
deferred processing mode as outlined in Section 12.1.2.3 of this document. In such case, upon
arrival of the triggering event, the Proxy Device must remove the timestamp() structure as
presented by the AS and replace it with a single byte of 0 per Section 11.5.1, change the
messageSize value to reflect that change, and move the remainder of the bytes in the message
forward to fill in as appropriate.

Note: The above requirements facilitate redundancy switching of Proxy Devices connected to
the serial digital video signals to Injectors. In the case of a Proxy Device failure, the new Proxy
Device can re-initialize with the Automation System, who is then aware of the failure, and able
to resend any splice commands it deems necessary.

7.0 MESSAGE FORMATS

Messages in this API all possess a general message structure that wraps the data for the specific
requests or responses being sent. This is done so that when the message is received, a common
parsing routine can store it, determine what the structure of the data is, and ensure that the
request and/or response and associated data is processed correctly. The end result of operations
carried by this API are the placement of SCTE 35 [1] Transport Stream (TS) private sections in
the outgoing TS and transmission to downstream splicing equipment. Within this document,
these private sections will be referred to as “splice_info_sections,” using the specific terminology
of SCTE 35 [1].

7.1 Terminology (Informative)

The following terms will be used to indicate which level of the communications structure is
being discussed. A splice_info_section will indicate information in the resultant TS, on one or
more PIDs designated for this purpose, which communicate with downstream splicing devices.
A “message” will indicate information communicated between the Automation System and the

16

Compression System via this API. A given “operation” may be termed a “request” or a
“response,” and will indicate an individual specific action to be taken by either the Compression
System or the Automation System. Such action may result in a splice_info_section being
generated.

There are 4 different categories of operations (requests and responses) provided by this API.
These are “Basic,” “Normal,” Control, and “Supplemental.” Basic operations supply the base
communications required to support the system. Normal operations supply the base DPI-related
functions (splicing, schedules, etc.) Supplemental operations are modifiers of Normal
operations. Control operations manage the Control Word database required for encryption
support. Detail is provided in Section 7.3.1.

7.2 Message Structures (Normative)

Messages in this API are defined assuming they will be carried via TCP/IP and all delivered as
part of a single datagram.

Messages in this API carried via TIA/EIA-232-F (or TIA/EIA-422-B) shall utilize the Basic Link
Layer Syntax specified in Appendix B.

Messages in this API carried in analog video shall also utilize the Basic Link Layer Syntax
specified in Appendix B. The implementation details are left to the system manufacturer. A
discussion of the link layer requirements is found in Appendix D.

Messages in this API carried via serial digital video do not require any additional “wrapping.”
See Appendix C.

Where field lengths in the resulting SCTE 35 [1] splice_info_section are less than a byte, they are
padded on the MSB side to fill an even byte count for ease of debugging. The high-order byte in
multiple byte fields is transmitted first, the lower order byte last. The Injector can pull the
required number of bits from the message in forming the resulting actual splice_info_section TS
packet. Each message begins with an operation identifier field, followed by a length field.

7.2.1 Addressing of Particular Items within a System

Two variables are provided in each of the messages to ensure the ability to uniquely identify
the origination and the destination of messages. For a request for section insertion into an
output TS, AS_index identifies the Automation System generating the request and the
specific program component (DPI_PID_index) for which the resulting SCTE 35 [1]
splice_info_section is intended. For responses, this indicates the specific Automation System
(AS_index) for which the response is intended.

The presence of these variables within this API is not intended to require support of the
generation of multiple DPI PIDs by a single Injector, since the support of multiple DPI PIDs
is optional (see Section 10.4).

7.2.1.1 AS_index

17

AS_index uniquely identifies the source of the message (since it is possible to have several
automation systems active at once). The number ranges from 0 to 255 and shall be zero if
this index is not required. This variable takes the value returned by the “AS_index” field of
the config_response message (see Section 9.3.2). A redundant AS shall be assigned one
single value of AS_index which applies to both primary and backup. Either the primary or
the backup is active at a given time, but not both. An Injector Instance shall be connected to
only one AS at a given time. If non-zero, AS_index shall be unique within a single DCS.

In systems where the PAMS to AS communications are not utilized, it is the operational
responsibility of the Digital Compression System operator and the Automation System
operator to each assign values such that they are unique for each automation system
communicating with a given Injector Instance through this API and that only one automation
system at a time will communicate with a given Injector Instance (a single value of
DPI_PID_index for that Injector). The Injector will insure that messages received via the
automation interface will only be used if authorized.

7.2.1.2 DPI_PID_index

DPI_PID_index specifies the index to the DPI PID which will carry the resulting
splice_info_sections. The number ranges from 0 to 65535. DPI_PID_index shall be zero if
not required by the system architecture.

The DPI_PID_index allows a given Automation System to direct messages to a specific DPI
PID within a specific MPEG program in a specific Transport Stream (TS) within the purview
of the operational system (DCS). This is especially important when there are multiple DPI
PIDs referenced by the PMT of a single MPEG program.

DPI_PID_index is required only if multiple Injector Instances (logical injectors) are present
for any physical connection or if one or more Injector Instances are generating more than one
DPI PID. Examples of situations requiring non-zero values of DPI_PID_index are multiple
injectors listening to the same physical connection, such as multiple injectors receiving the
same video stream, or multiple Injector Instances located behind a single IP address and port
number.

Ordinarily, there shall be one value of DPI_PID_index for each DPI PID referenced by a
program’s PMT for each program within the purview of the DCS. The exception to the rule
is the case where a single DPI PID is shared by more than one program within a single TS. In
this case, more than one PMT may make reference to the same shared DPI PID via a common
value for DPI_PID_index.

Multiple language versions of the same movie are an example where this facility may be
utilized. The AS is expected to know what these programs are and that the same value of
DPI_PID_index may be assigned for each. In this example, the different programs share a
video PID but have different audio PIDs for each language. The associated DPI PID for the
video could be the same or different in this case.

18

The AS may validate for shared PIDs before sending a provisioning_response message (see
Section 9.5.1.2).

In all other circumstances, each value of DPI_PID_index shall be unique.

This value is normally furnished to the AS by the PAMS during system initialization as part
of the Injector Service Notification (via the provisioning_request message, see Section 9.4).
In systems without PAMS to AS service, this value must be manually provided to the
automation system.

It is recommended that even trivial system architectures utilize non-zero values of
DPI_PID_index.

7.2.2 Single Operation Message

This variable length structure carries a single instance of an operation (request or response as
it will be normally termed) listed in Table 7-3 and whose structural details are provided in
Sections 8.0 and 9.0 of this document.

Operations listed in Table 7-3 shall use the single_operation_message() and shall not use
multiple_operation_message().

19

Table 7-1 - single operation message

Syntax Bytes Type

single_operation_message() {

 opID 2 uimsbf

 messageSize 2 uimsbf

 result 2 uimsbf

 result_extension 2 uimsbf

 protocol_version 1 uimsbf

 AS_index 1 uimsbf

 message_number 1 uimsbf

 DPI_PID_index 2 uimsbf

 data() * Varies

}

7.2.2.1 Semantics of fields in single_operation_message()

opID – An integer value that indicates what message is being sent. See Table 7-3. It
shall only take values whose “Usage” column entries are listed as “Basic Request” or
“Basic Response.”

messageSize – The size of the entire single_operation_message() structure in bytes.

result – The results to the requested message. See Section 13.0 (Result Codes) for
details on the result codes. For message Usage types (as shown in the Usage column of
Table 7-3) other than Basic Response messages, this shall be set to 0xFFFF.

result_extension – This shall be set to 0xFFFF unless used to send additional result
information in a response message.

protocol_version – An 8-bit unsigned integer field whose function is to allow, in the
future, this message type to carry parameters that may be structured differently than those
defined in the current protocol. It shall be zero (0x00). Non-zero values of
protocol_version may be used by a future version of this standard to indicate structurally
different messages.

20

AS_index – Defined in Section 7.2.1 above. Response messages return the value from
the corresponding Request message.

message_number – The message_number can be any number in the range 0 to 255.
The message_number must be unique for the life of a message within a given Injector
Instance. The message_number is used to identify an individual request.

When multiple copies of the same message are sent, they can be identified because they
have the same message_number. If not in current use, the message_number may freely
vary over the range of 0 to 255.

In a uni-directional system, the message number can be assumed to be available for reuse
after the last copy of the message is sent and after the associated processing timestamp()
time has passed.

DPI_PID_index – Defined in Section 7.2.1 above. Response messages return the value
from the corresponding Request message.

data() – Specific data structure for the message being sent. Details on each of the
messages containing data are described below. The size of this field is equal to the
MessageSize minus the size of the fixed portion of single_operation_message() and is
determined by the size of the data being added to the message. Not all messages utilize
the data() field.

7.2.3 Multiple Operation Message

This variable length structure carries one or more of the operations (or requests) listed in
Table 7-4. which must be either “Normal”, “Control”, or “Supplemental” in Usage category
and whose structural details are provided in Section 8.0 of this document. Each request in the
data() structure includes a opID value (2 bytes) and a length (2 bytes). Thus the first 4 bytes
of every request within the repeating structure is identical to easily permit a receive device to
skip a request if the opID is unknown. This allows for extensions to the protocol in the
future.

Use of the multiple_operation_message() will normally result in the insertion of at least one
SCTE 35 [1] splice_info_section into the resultant TS, unless the Injector (IJ) detects fatal
errors in the message. In multiple byte fields the first byte received is the most significant
byte. The value placed in the SCTE 35 [1] splice_info_section variable named “tier” may be
user specified by the insert_tier_data() request (see Section 8.8.9). In the absence of an
insert_tier_data() request, the Injector shall set “tier” to the default value 0xFFF.

Note that the use of the multiple_operation_message() will result in a single_operation
message in response, since response messages are defined as Basic Usage responses (which,
by definition, use the single_operation_message).

21

7.2.3.1 Order of Request Execution

This structure permits multiple requests to be grouped together to permit transmission in
one message (and execution as appropriate). Its use is permitted in both bi-directional
(serial or TCP/IP-based) and uni-directional systems. The data() structure is populated
with one or more of the request structures defined in Section 8.0 (within the constraints
identified elsewhere in this document). The time of processing may be instantaneous or
delayed, as required.

All requests are executed in the order that they exist within the data() structure. If
requests are time based, then the time is referenced to the start of the video frame that the
last byte is received, not the frame in which it was actually processed.

Requests listed in Table 7-3 shall not use the multiple_operation_message().

Some requests are order dependant, such as the various Supplemental requests. The
Supplemental request modifies the characteristics of a Normal request, so they must be
carried following the associated Normal request. In this way, multiple Normal requests
with Supplemental requests can be carried without confusing which Supplemental request
is associated with which Normal request.

Each instance of data() shall begin with a Normal or a Control request. A Normal request
may be followed by zero or more Supplemental requests which modify or augment it.
Unless otherwise specified, Supplemental request operations may occur in any order,
except that they must follow the Normal operation to which they apply. It may then be
followed by additional Normal requests for which the AS requests time deferral. The
placement of a new Normal request shall indicate that the definition of the preceding
Normal request is complete and that the resulting SCTE 35 [1] splice_info_section can be
formatted and output at the time indicated by timestamp().

As used here, the term “processed” refers to whatever operations the Injector must
accomplish to emit an SCTE 35 [1] section or sections or change a CW database.
Processing begins when the timestamp() time has expired and ends when the section or
sections are placed in the TS or the database is updated.

22

7.2.3.2 Format of the multiple_operation_message() structure

Table 7-2 - multiple operation message

Syntax Bytes Type

multiple_operation_message() {
 Reserved 2 uimsbf
 messageSize 2 uimsbf

 protocol_version 1 uimsbf

 AS_index 1 uimsbf

 message_number 1 uimsbf

 DPI_PID_index 2 uimsbf

 SCTE35_protocol_version 1 uimsbf

 timestamp() * Varies

 num_ops 1 uimsbf

 for (i=0; i < num_ops; i++) {

 opID 2

 data_length 2

 data() * Varies

 }

}

7.2.3.3 Semantics of fields in multiple_operation_message()

Reserved – This field shall be set to all ones (0xFFFF).

messageSize – The size of the entire multiple_operation_message() structure in bytes.

protocol_version – An 8-bit unsigned integer field whose function is to allow, in the
future, this message type to carry parameters that may be structured differently than those
defined in the current protocol. It shall be zero (0x00). Non-zero values of
protocol_version may be used by a future version of this standard to indicate structurally
different messages.

23

AS_index – Defined in Section 7.2.1 above.

message_number – An integer value that is used to identify an individual message.
The message_number variable must be unique for the life of a message. When multiple
copies of the same message are sent, they can be identified because they have the same
message_number. This means that for messages that are to be processed in the future,
the message_number may not be reused until the message has been processed. If not in
current use, the message_number may freely vary over the range of 0 to 255.

In a uni-directional system, the message number can be assumed to be available for reuse
after the associated processing timestamp() time has passed.

DPI_PID_index – Defined in Section 7.2.1 above.

SCTE35_protocol_version – This 8-bit unsigned integer field indicates the version of
SCTE 35 protocol that the section which results from this message conforms to. Its
function is to allow, in the future, this section type to carry parameters that may be
structured differently than those defined in the current protocol. At present, the only valid
value defined by SCTE 35 [1] is zero (0x00). Non-zero values of
SCTE35_protocol_version may be used by a future version of this standard to indicate
structurally different sections.

timestamp() – This field delivers the exact time to process all of the requests in this
message (see Section 11.5). The time_type field of timestamp() may be zero, indicating
the messages are processed immediately. The timestamp() may contain either the UTC
time or the VITC time specifying when to process the requests. The timestamp() may
alternatively contain the number of the GPI to use for triggering the messages to be
processed. Once the GPI is triggered, all requests associated with that edge of the GPI
will be processed.

num_ops – An integer value that indicates the number of requests contained within the
data() loop.

opID – An integer value that indicates what request is being sent. See Table 7-4.

data_length – The size of the data() field being sent in bytes.

data() – Specific data structure for the request being sent. Details on each of the
requests containing data are described in Sections 8.3.1, 8.4, 8.5, 8.7, and 8.8 of this
document. The size of this field is equal to data_length and is determined by the size of
the data being added to the multiple_operation_message() structure.

7.2.3.4 Detailed Discussion of Message Syntax and Semantics

Note that each opID in Table 7-4 has an associated “Usage” column, which indicates the
class of each request. Normal requests have no associations with other requests and (once
the time value specified in the timestamp() structure is reached) are immediately

24

formatted into the appropriate SCTE 35 [1] message and dispatched. Each Normal
request may be followed by zero or more “Supplemental” requests. The Supplemental
requests must follow immediately after the Normal request that they are modifying.
Some Supplemental requests are specific to a certain type of Normal request. Others are
a general Supplemental request that can be associated with any Normal request, when
appropriate. The Injector must ensure in processing any Normal requests that it checks
for the existence of associated Supplemental requests before inserting the transport packet
into the multiplex.

For the Control requests, only one request per Control Word index is permitted within a
single multiple_operation_message(). It is permitted to send several requests in the same
message, each operating on different Control Words. For example, update CW_index 1
and delete CW_index 2 in the same message is permitted. It would not be permitted to
update CW_index 1 and then delete CW_index 1 within the same message.

DPI Schedules are potentially very large. The system is downloading a playlist of future
ad avail periods, one splice point at a time. There is a single start message, and a single
stop message, to frame the downloading of the data. Like other messages in this API, the
schedules have Normal and Supplemental features. If Supplemental features are required,
they must be included in the same message as the basic schedule request, and
immediately following the associated basic request.

If multiple Normal requests are present in a message, then the requests are processed in
the same order that they appear in the message. If the time_type field of timestamp() is
zero, all Normal request timing is relative to the arrival time of the last byte of the
message. Please see Section 7.2.3.1 for additional information.

7.3 Operation Types (Normative)

Table 7-3 and Table 7-4 contain the assigned values for each type of operation (request or
response) supported by this API. Other columns in the tables list information identifying the
normal originator and recipient, and other useful information.

Those operations required for the Simple Profile appear in the column labeled “In Simple
Profile,” with an indication of “Y.” An “N” indicates that support of the Request is not required
for compliance. “n/a” indicates “not applicable.” With the sole exception of the
“general_response_data()” message, compliant implementations may also omit support for those
messages in Table 7-3 which show PAMS as either the “Sent By” or “Sent To” when the PAMS
is not a constituent portion of the overall system. Systems should with PAMS as constituent
portion of the overall system should indicate this as “Simple Profile with PAMS,” or, if
applicable (and as an example), “Simple Profile plus encryption with PAMS.”

25

Table 7-3 - opID Assigned Values and Meanings for single_operation_messages

opID assigned
value

Operation Name Sent By Sent To In
Simple
Profile

Description Usage

0x0000 general_response_data() PAMS,
Automation or
Injector

PAMS,
Automation or
Injector

Y Used to convey asynchronous
information between the devices.
There is no data() associated with this
message.

basic
response

0x0001 init_request_data() Automation Injector Y Initial Message to Injector on
predefined port

basic
request

0x0002 init_response_data() Injector Automation Y Initial Response to Automation on the
established connection

basic
response

0x0003 alive_request_data() Automation Injector Y Sends an alive message to acquire
current status.

basic
request

0x0004 alive_response_data() Injector Automation Y Response to the alive message
indicating current status.

basic
response

0x0005 - 0x0006 User Defined n/a Receiving devices shall ignore these
values. Used in legacy systems.

0x0007 inject_response_data() Injector Automation Y Response to indicate that the request
was received and that Injector is
preparing to send SCTE 35 [1]
message or messages.

basic
response

26

opID assigned
value

Operation Name Sent By Sent To In
Simple
Profile

Description Usage

0x0008 inject_complete_response_data() Injector Automation Y Response from Injector when all
resultant SCTE 35 [1] splice
messages are sent.

basic
response

0x0009 config_request_data() Automation PAMS n/a Automation sends PAMS its IP
configuration

basic
request

0x000A config_response_data() PAMS Automation n/a Responds to Config_Request basic
response

0x000B provisioning_request_data() PAMS Automation n/a PAMS notification of the Injectors
provisioned for DPI service

basic
request

0x000C
provisioning_response_data()

Automation PAMS n/a Response from Automation that the
message is received and DPI is
starting

basic
response

0x000D -0x000E Reserved n/a Range Reserved Used in legacy
systems.

0x000F fault_request_data() Automation PAMS n/a Automation discovered
communication problem with an
Injector

basic
request

0x0010 fault_response_data() PAMS Automation n/a Response from PAMS basic
response

0x0011 AS_alive_request_data() PAMS Automation n/a Maintain PAMS to AS
communications

basic
response

0x0012 AS_alive_response_data() Automation PAMS n/a Maintain AS to PAMS
communications

basic
response

0x0013 -0x00FF Reserved for future basic requests n/a Range Reserved for future

27

opID assigned
value

Operation Name Sent By Sent To In
Simple
Profile

Description Usage

or responses standardization.

0x0100 -0x7FFF Reserved n/a Range Reserved for Table 7-4 uses

0x8000 -0xBFFF User Defined Automation or
PAMS

Injector or
PAMS

n/a Range available for user defined
functions.

0xC000 - 0xFFFE Reserved Range Reserved for user defined
Table 7-4 uses.

0xFFFF Reserved Reserved value

28

Table 7-4 - opID Assigned Values and Meanings for multiple_operation_messages

opID
assigned
value

Operation Name Sent By Sent To In
Simple
Profile

Description Usage

0x0000 -
0x00FF

Reserved n/a Range Reserved (see Table 7-3).

0x0100 inject_section_data_request() Automation Injector Y Generates an SCTE 35 [1] section directly Normal

0x0101 splice_request_data() Automation Injector Y Normally used request to send SCTE 35
[1] message or messages.

Normal

0x0102 splice_null_request_data() Automation Injector Y Generates an SCTE 35 [1] splice_null
operation

Normal

0x0103 start_schedule_download_request_data() Automation Injector N Initiates schedule download Normal

0x0104 time_signal_request_data() Automation Injector Y Generates an SCTE 35 [1] time_signal
operation

Normal

0x0105 transmit_schedule_request_data() Automation Injector N Initiates schedule transmission Normal

0x0106 component_mode_DPI_request_data() Automation Injector N Adds component mode to a DPI request Supplemental

0x0107 encrypted_DPI_request_data() Automation Injector N Adds encryption to a DPI request Supplemental

0x0108 insert_descriptor_request_data() Automation Injector Y Adds a descriptor to another operation Supplemental

0x0109 insert_DTMF_descriptor_request_data() Automation Injector Y Adds a DTMF descriptor to another
operation

Supplemental

0x010A insert_avail_descriptor_request_data() Automation Injector Y Adds an avail_descriptor to the SCTE 35 Supplemental

29

opID
assigned
value

Operation Name Sent By Sent To In
Simple
Profile

Description Usage

[1] section

0x010B insert_segmentation_descriptor_request_data() Automation Injector Y Adds a segmentation descriptor to another
operation

Supplemental

0x010C proprietary_command_request_data() Automation Injector Y Adds a proprietary descriptor to another
operation

Normal

0x010D schedule_component_mode_request_data() Automation Injector N Adds component mode to an avail
definition

Supplemental

0x010E schedule_definition_data() request Automation Injector N Single avail definition Supplemental

0x010F insert_tier_data() Automation Injector Y Specifies tier data Supplemental

0x0110 -
0x02FF

Reserved n/a Range Reserved for future standardization
(additional Normal or Supplemental
operations).

0x0300 delete_ControlWord_data()request Automation Injector N Maintains CW database Control

0x0301 update_ControlWord_data() request Automation Injector N Maintains CW database Control

0x0302 -
0x7FFF

Reserved n/a Range Reserved for future standardization
(additional Control operations).

0x8000 -
0xBFFF

Reserved n/a Range Reserved (see Table 7-3).

0xC000 -
0xFFFE

User Defined Automation
or PAMS

Injector or
PAMS

n/a Range available for user defined functions
for multiple operation messages.

0xFFFF Reserved Reserved value.

30

7.3.1 Meaning of the Usage Field in Table 7-3 and Table 7-4

The Usage field indicates the class of each request or response and the messages with which they
may be used:

• Basic requests or responses shall always use the single_operation_message()
structure (see Section 7.2.2).

• Normal requests shall have no linkage with other Normal requests and are
normally formatted into the appropriate SCTE 35 [1] splice_info_section and
dispatched. Normal requests shall use the multiple_operation_message() structure
(see Section7.2.3.2). While multiple Normal requests may be grouped together
into a single instance of multiple_operation_message(), they may not have any
dependencies beyond execution order (see Section 7.2.3.1).

• Supplemental requests are also carried only by the multiple_operation_message()
structure (See Section7.2.3). Each Supplemental request follows immediately
after the Normal request that they are modifying. Some Supplemental requests
are specific to a certain request. Others are a general request that can be
associated with any Normal request, when appropriate.

• Control requests are also carried only by the multiple_operation_message()
structure (See Section7.2.3). Each Control request shall be independent of any
other contained within the same data() structure and shall be executed at the time
specified in the timestamp(). Multiple Control requests may be present within the
data() structure. Supplemental requests do not modify Control requests.

7.4 Conventions and Requirements

1. Each message that contains data is outlined with its data fields and types below.
Additional structures are indicated as functions and are described in Section 11.0 of
this document.

2. The Injector shall retain the following data values while messages are being
processed:

• message_number

• splice_event_id

These are retained until the inject_complete_response message is sent to the AS. In
addition, each Injector which supports splice schedule messages must retain any
descriptors defined via this API during the output of the individual SCTE 35 [1]
splice_schedule() sections which result from a single schedule_definition request (see
Section 8.7).

31

3. All string lengths have space reserved for a null terminator character (0x00) and shall
use null terminated strings. The size defined for the string is constant and will not
vary depending on the actual length of the string. As an example a string that is
defined as 16 characters can have at most 15 characters of data followed by a null
character. Once a null is encountered in scanning a string, the rest of the characters in
the string are undefined and ignored. This specification uses 8 bit ASCII characters
for strings.

4. Response messages shall be sent out without unnecessary delay. The device expecting
a response should consider no response within 5 seconds to indicate a timeout. When
the Automation System suspects a timeout, it shall send an alive_request message. If
the Injector does not answer as specified in this document, the connection for this
channel shall be dropped and re-established.

5. Initialization (or re-initialization) of the communications between the AS and the
Injector shall not cause interruption of any of the audio, video, or DPI message
insertions currently being processed by either the AS or the Injector. Initialization can
be safely conducted at any point in time. This includes changes to Injector services or
Injectors themselves. These events may be expected to occur at random intervals.

6. When a device is polling to start or restart communications, a suitable interval (30 to
60 seconds) may be left between attempts. Such an interval might be randomly
determined, with exponential backoff, as is commonly used in Ethernet-based
protocols.

8.0 AUTOMATION SYSTEM TO INJECTOR COMMUNICATION

8.1 Initialization

The methods of initializing the TCP/IP communications parameters are discussed in Section 9.4

For TCP/IP, the initial communication begins with Injector listening on predefined port 5167 and
the Automation System opening an API Connection to the Injector via that socket. If another
socket number has been furnished in the provisioning_request message (via the
injector_socket_number field), that socket should be used instead of the default socket 5167.
The Automation System sends an init_request message to the Injector. The Automation System
then listens for the response from the Injector on the established API Connection. All further
communication is done on this API Connection. Either the Automation System or Injector may
terminate communications by closing this API Connection. Each device is responsible for
detecting and properly handling a closed API Connection.

The Injector should support multiple Automation System connections simultaneously if
provisioned to do so. When the Injector initializes the TCP listener on port 5167 it should allow
for the number of API Connections it is provisioned for (see Section 10.4). No two Automation
Systems may have an active connection to any given Injector Instance at any one time. The

32

Injector Instance shall return a response of “Injector already in use” (see Table 13-1) if this
occurs.

The protocol_version fields in single_operation_message() and multiple_operation_message()
permit the Automation System and the Digital Compression System to “negotiate” at which level
of the protocol the system will function. The lesser value shall be taken as the operating point for
the system as initialized. Please note that this value may have implications upon the possible
values for the SCTE35_protocol_version field (see Sections 7.2.2 and 7.2.3).

In a uni-directional system, the AS and Injector must both be configured to operate at a
compatible protocol version.

8.1.1 init_request AS ==> IJ

This basic usage request is sent by the Automation System to the Injector to initialize a
TCP/IP connection. The appropriate value for desired protocol_version shall be furnished to
the Injector in this message.

Table 8-1 - init_request_data

Syntax Bytes Type

init_request_data(){

}

8.1.2 init_response IJ ==> AS

This basic usage response is sent by the Injector to the Automation System to indicate the
receipt of the init_request. The appropriate value for desired protocol_version shall be
furnished to the AS in this message. All devices supporting this API shall operate from this
point forward at the lesser of the furnished protocol_version values.

Table 8-2 - init_response_data

Syntax Bytes Type

init_response_data(){

}

A Proxy Device may respond to this message with a “Proxy Response” result code (see
Table 13-1). This permits the Automation System, should it desire to do so, to track whether
or not a given Injector is served by a Proxy Device or a direct connection.

33

8.2 Alive (“Heartbeat”) Communications

For bi-directional communications, once initialization is complete, then the Automation System
shall send alive_request messages to ensure that the Injector and the communications path
remain up and running. Each alive_response message (wrapped in the
single_operation_message()) contains a result field that may be used to signal if DPI support has
been stopped on the recipient’s end. If there has been no activity on the connection in the
preceding 60 seconds, then an alive_request message shall be sent.

If TCP/IP is being used and the user de-provisions DPI support in the Injector, the Injector will
close the socket connection to the Automation System without waiting for the next
alive_request.

For uni-directional communications this message also serves to provide a mechanism that the
receiving device shall use to verify a working connection to the automation computer. This
message shall be sent at least once every 60 seconds. If the messages fail to arrive, then the
receiving Injector shall notify its PAMS or a human operator that communications may be lost.

The second function is to provide clock synchronization for UTC or VITC time-stamped splice
messages. The time () structure provides the time for the start of the associated video frame. This
requires the sender and the receiver to both be examining synchronous video of the same frame
rate. In multi-standard systems, this requirement is very important.

The receiving device can synchronize to the vertical interval of its incoming video and the
received time () value and thus maintain a local UTC or VITC time base to use with time-
stamped messages.

For TCP/IP-based systems, implementers may choose to use an external time standard to keep
the internal clocks of the Automation System and the Injector in sync. This is not strictly
necessary for the simplest implementation that meets the requirements of SCTE 35 [1].

If the Automation System has access to a facility master clock, and it makes sense to both parties,
then the current value of facility time-of-day timecode can be transmitted in the “alive_request”
messages from the Automation System to the Injector and conversely in the Injector to the
Automation System “alive_response” responses. Alternatively, facility time-of-day time
samples may be conveyed to the Injector in the video signal proper as VITC.

8.2.1 alive_request AS ==> IJ

This basic request serves to ensure that the AS to Injector communications path remains open
and reliable. In addition it may be used to ensure the internal time within each is
synchronized. If deferred requests are to be used with a time-value trigger, then it is vital that
synchronization be maintained.

34

Table 8-3 - alive_request_data

Syntax Bytes Type

alive_request_data(){

 time()

}

8.2.1.1 Semantics of fields in alive_request_data ()

time() – This is an optional structure, unless the time_type field of the timestamp()
structure carried in multiple operation messages is non-zero. The current UTC time clock
of the sending device checked as close as possible to the sending of the message. This is
designed to be used by the Injector and the Automation System to check on how well the
two systems are time synchronized. See Section 11.4 for a definition of time(). If this
time synchronization is not being used in a given system, the value of time() may be set to
zero.

8.2.2 alive_response IJ ==> AS

This basic response serves to ensure that the AS to Injector communications path remains
open and reliable. In addition it may be used to ensure the internal time within each is
synchronized. If deferred requests are to be used with a time-value trigger, then it is vital that
synchronization be maintained.

Table 8-4 - alive_response_data

Syntax Bytes Type

alive_response_data(){

 time()

}

A Proxy Device should respond to this message with a “Successful Response” result code
(see Table 13-1) as if it were an Injector.

35

8.2.2.1 Semantics of fields in alive_response_data ()

time() – This is an optional structure, unless the time_type field of the timestamp()
structure carried in multiple operation messages is non-zero. The current UTC time clock
of the sending device checked as close as possible to the sending of the message. This is
designed to be used by the Injector and the Automation System to check on how well the
two systems are time synchronized. See Section 11.4 for a definition of time(). If this
time synchronization is not being used in a given system, the value of time() may be set to
zero.

8.3 Splice Requests

After initializing communications with the Injector, the Automation System can issue (via a
multiple operation message), one of the Normal requests listed in the Usage column of Table 7-4.
Issuing typically a splice_request to initiate placement of one or more SCTE 35 [1]
splice_info_sections into the outgoing TS. The Automation System may choose to send any of
the messages multiple times before the designated in-point (especially if return path
communications is unavailable). The Injector can detect that these are duplicates of one another
by comparison of the message_number fields.

The two messages that are returned (in a bi-directional system) from the splice request messages
are the inject_response message and the inject_complete_response message. A inject_response
message is returned upon receipt of the splice request. A inject_complete_response message is
returned once the SCTE 35 [1] section has been generated.

8.3.1 splice request AS ==> IJ

This Normal request is the usual carrier of splicing requests. It may be further elaborated
upon by various Supplemental type requests which may follow it within the data() structure
of a multiple_operation_message.

Table 8-5 - splice_request_data

Syntax Bytes Type

splice_request_data() {

 splice_insert_type 1 uimsbf

 splice_event_id 4 uimsbf

 unique_program_id 2 uimsbf

 pre_roll_time 2 uimsbf

 break_duration 2 uimsbf

 avail_num 1 uimsbf

36

 avails_expected 1 uimsbf

 auto_return_flag 1 uimsbf

}

8.3.1.1 Semantics of fields in splice_request_data()

splice_insert_type – An 8-bit unsigned integer defining the type of insertion operation
desired. These will result in the generation of one or more SCTE 35 [1] splice_info()
sections with a splice_command_type field value of splice_insert with other inferred
field values also being set within the resulting splice_info() section. The other inferred
field values are noted with the discussion of each assigned value. Please refer to Section
8.3.2 below for additional clarification of the inferred values.

37

Table 8-6 - splice_insert_type Assigned Values

splice_insert_type Value
assigned

reserved 0
spliceStart_normal 1
spliceStart_immediate 2
spliceEnd_normal 3
spliceEnd_immediate 4
splice_cancel 5

spliceStart_normal section(s) occur at least once before a splice point. This interval
should match the requirements of SCTE 35 [1] (Section 7.1) and serve to set up the actual
insertion. It is recommended that if sufficient pre-roll time is given by the AS, the
Injector send several succeeding SCTE 35 [1] splice_info_section() sections (per SCTE
35 [1] and SCTE 67) in response to a single splice_request message with a
spliceStart_normal splice_insert_type value. The minimum non-zero pre_roll_time is
defined in Section 11.3 of this document.

spliceStart_immediate sections may come once at the splice point’s exact location. The
Injector shall set the splice_immediate_flag to 1 and the out_of_network_indicator to 1
in the resulting SCTE 35 [1] splice_info_section() section. Usage of “immediate mode”
signaling is not recommended by SCTE 35 [1] and may result in inaccurate splices.

spliceEnd_normal sections come to terminate a splice done without a duration specified.
They may also be sent to ensure a splice has terminated on schedule. The Injector sets the
out_of_network_indicator to 0. If they are to terminate a spliceStart_normal with no
duration specified, they should be sent prior to the minimum interval before the return
point and carry a value for pre_roll_time, especially if terminating a long form insertion.
The minimum non-zero pre_roll_time is defined in Section 11.3 of this document.

spliceEnd_immediate sections come to terminate a current splice before the splice point,
or a splice in process earlier than expected. The Injector sets the
out_of_network_indicator to 0 and the splice_immediate_flag to 1. The value of
pre_roll_time is ignored.

splice_cancel sections come to cancel a recently sent spliceStart_normal section. The AS
must supply the correct value of splice_event_id for the section to be cancelled. The
Injector shall set the splice_event_cancel_indicator to 1.

splice_event_id – As specified in SCTE 35 [1]. See the discussion in Section 11.1 of
this document for further details. The Injector retains this value until the time indicated
by the timestamp() is reached.

38

unique_program_id – As specified in SCTE 35 [1]. See the discussion in Section 11.2
of this document for further details.

pre_roll_time – An 16-bit field giving the time to the insertion point in milliseconds.
This field is ignored for splice_insert_type values other than spliceStart_normal and
spliceEnd_normal. If zero (and Component Mode is not in use) the Injector should set
the splice_immediate_flag to 1 in the resulting SCTE 35 [1] splice_info_section. The
minimum non-zero pre_roll_time is defined in Section 11.3 of this document.

break_duration – A 16-bit field giving the duration of the insertion in tenths of seconds.
If zero the Injector will not set a duration. This field is ignored for splice_insert_type
values other than spliceStart_normal and spliceStart_immediate.

avail_num – An 8-bit field giving an identification for a specific avail within the current
unique_program_id. The value follows the semantics specified in SCTE 35 [1] for this
field. It may be zero to indicate its non-usage.

avails_expected – An 8-bit field giving a count of the expected number of individual
avails within the current viewing event. If zero, it indicates that avail_num has no
meaning.

auto_return_flag – If this field is non-zero and a non-zero value of break_duration is
present, then the auto_return field in the resulting SCTE 35 [1] section will be set to
one. This field is ignored for splice_insert_type values other than spliceStart_normal
and spliceStart_immediate.

8.3.1.2 Detailed Discussion of Message Syntax and Semantics

The Automation System will only need to send a single splice_request message per
splice unless there is a compelling reason to do so otherwise (such as video conveyance
or cancellation). The Injector, on the other hand, may generate several SCTE 35 [1]
splice_info_sections per splice on a normal basis. This is in keeping with the
recommendations of SCTE 67. To permit such action, the AS must send the single
splice_request message well in advance of the minimum pre_roll_time (for example, 10
seconds instead of the minimum 4).

If a spliceStart_normal request with a non-zero value of pre_roll_time which is less than
the minimum allowed value is received, the Injector shall issue the resultant SCTE 35 [1]
splice_info_section and return an error code of “pre-roll too small”.

If the AS has issued a splice_cancel splice_insert_type request to the Injector, and the
indicated request was issued with a time delay, then the Injector can use the
splice_event_id field to determine if it should simply not issue the resulting SCTE 35 [1]
section related to that message_number, or if it needs to issue a splice_insert() section
with the splice_event_cancel_indicator set to ‘1’.

39

If a splice is to be canceled, then the splice_insert_type value would be splice_cancel,
the AS supplies the correct value for splice_event_id and the Injector will set the
splice_event_cancel_indicator to 1 in the resulting splice_info_section. If a splice is to
be cancelled, then the AS is responsible for ensuring that a cancellation is sent before the
indicated insertion point is reached.

If an early return is to be signaled, the splice_insert_type value would be
spliceEnd_immediate. The splice_info_section the Injector will send as a result has
out_of_network_indicator set to 0 and splice_immediate_flag set to 1.

For long-form insertions where a duration is either not known or the return is to be
explicitly signaled, the break_duration field is set to 0 and a non-zero pre_roll_time
value is given. At the return point, a spliceEnd_normal request is sent, again with a non-
zero value in the pre_roll_time field. In this case, the Injector may also choose to send
several return splice_info_sections in a manner analogous to spliceStart_normal.

40

8.3.2 Mapping of splice_request fields into SCTE 35 [1] splice_insert() fields (Informative)

The following table summarizes the settings resulting from the combination of the
splice_insert_type and the other parameters in the splice_request_data(). Duration_flag
is set to one if a non-zero break_duration is given.

Table 8-7 - splice_insert_type corresponding splice_insert() field settings
(Informative)

This API Resulting SCTE 35 splice_insert() structure

splice_insert_type Value splice_
event_

cancel_
indicator

out_of_
network

_indicator

duration
_flag

splice_
immediate_

flag

auto_
return_ flag*

reserved 0 n/a n/a n/a n/a n/a

spliceStart_normal 1 0 1 0 or 1 0 0 or 1

spliceStart_immediate 2 0 1 0 or 1 1 0 or 1

spliceEnd_normal 3 0 0 0 0 n/a (0)

spliceEnd_immediate 4 0 0 0 1 n/a (0)

splice_cancel 5 1 n/a (0) 0 n/a (0) n/a (0)

* Note: The auto_return_flag is within the SCTE 35 [1] break_duration() structure, not
the splice_insert() structure, in which all of the other parameters are defined.

A more detailed drawing is shown below, illustrating the mapping between the fields
contained in a single_operation_message() (with opID of splice_request and the resulting
SCTE 35 [1] splice_info_section()).

Please note that one or more descriptors are built in response to a splice_request, to which
the user may add by use of an insert_avail_descriptor request (see Section 8.8.4),
insert_descriptor request (see Section 8.8.5), an insert_DTMF_descriptor request (see
Section 8.8.6), or an insert_segmentation_descriptor request (see Section 8.8.7).

41

Figure 8-1 - multiple_operation_message() to SCTE 35 section field mapping
(Informative)

splice_info_section() {
table_id
section_syntax_indicator
private_indicator
section_length
protocol_version
encrypted_packet
encryption_algorithm
pts_adjustment
cw_index

splice_command_type
splice_insert() {

splice_event_id
splice_event_cancel_indicator
out_of_network_indicator
program_splice_flag

0x05 = splice_insert()

duration_flag
splice_immediate_flag
splice_time() {

time_specified_flag
pts_time

}
break_duration() {

auto_return
duration

}
unique_program_id
avail_num
avails_expected

}
descriptor_loop_length
avail_descriptor() {

splice_descriptor_tag
descriptor_length
identifier
provider_avail_id

}
for(i=0; i<N2; i++) {

alignment_stuffing
}
CRC_32

}

multiple_operation_message()
Reserved
messageSize
protocol_version
AS_index
message_number
DPI_PID_index
SCTE35_protocol_version
timestamp()
num_ops
opID
data_length
splice_request_data() {

splice_insert_type
splice_event_id
unique_program_id

0x0101 = splice_request_data()

pre_roll_time
break_duration
avail_num
avails_expected
auto_return_flag

}
}

0xFFFF

1

0x01 = spliceStart_normal

SCTE 35SCTE 104

splice_command_length

0xFC
0
0

1

1

42

8.4 Encryption Support (Normative)

The method provided by this API for the support of encrypted SCTE 35 [1] splice_info_sections
assumes that the encryption will be done by the Injector. As a result, the PAMS will need to
supply a number of additional items of provisioning data related to the encryption method to be
used, such as the key information (which may also be provided by the AS using this API) and so
forth. Please refer to Section 9 of SCTE 35 [1] for additional information.

The Injector which supports encryption shall contain 256 Control Word “slots”. If a slot has been
filled with a Control Word set (three 64-bit numbers) then encryption can take place. If the AS
references a slot without a Control Word defined, then the entire generation of the associated
splice_info_section shall be aborted and an error returned to the AS or an alarm raised by the
Injector.

8.4.1 Encryption Control Word Support

The API specifies the basic messages to define and maintain the current (and next) control
words. Compliant implementations which support encryption may choose not to support
these messages (defined in Sections 8.4.3 and 8.4.4) and instead have the PAMS manage all
Control Words.

These AS requests carry sensitive security information. If these requests are used, then
normal security precautions should be implemented (such as password protection on login
screens and physical access restrictions to control areas). The assumption in using these
messages is that the link used to carry the messages is secure and is not easily compromised.
Further protection for these requests, such as encrypting the requests, is outside the scope of
this document.

8.4.2 The encrypted DPI request

The encrypted DPI message is used for applications that wish to use the built in security
capabilities of SCTE 35 [1] under the direction of the Automation System. This message is
sent in the clear, and the resulting SCTE 35 [1] section will be encrypted by the Injector
before being formatted and placed in the output multiplex.

The actual control words to use by the Injector must have been previously provisioned by the
PAMS or by the AS (via the update_ControlWord request in Section 8.4.3) for the particular
control word index, or the resulting SCTE 35 [1] splice_info_section() will not be placed in
the outgoing TS, the data() discarded, and an error code returned by the Injector. In a uni-
directional communication system, the error return path shall be notification of the PAMS
operator.

This is a Supplemental usage request and must follow the associated splice_request_data() in
the data() structure of the multiple_operation_message() (see Section 7.2.3) for which it

43

applies. If component_mode_DPI_data() structures are also present in the
multiple_operation_message data() structure, then the encrypted_DPI_data() follows the final
occurrence of component_mode_DPI_data(). When this request is present, the
encrypted_packet bit shall be set in the resulting splice_info_section().

Table 8-8 - encrypted_DPI_request_data

Syntax Bytes Type

encrypted_DPI_request_data() {

 encryption_algorithm 1 uimsbf

 CW_index 1 uimsbf

}

8.4.2.1 Semantics of fields in encrypted_DPI_request_data()

encryption_algorithm – This field carries the value of the 6-bit field defined in SCTE
35 [1].

CW_index – An 8 bit unsigned integer which conveys which Control Word (key) is to
be used to encrypt and decrypt the message.

8.4.3 update_ControlWord request AS ==> IJ

This is a Control usage request, and serves to setup an authorization group. Changing the
Control Words for a service is expected to be a relatively rare occurrence. This request allows
the encryption group to be downloaded and then used by subsequent encrypted_DPI requests.
This message will replace any existing Control Words in the specified index position.

In some architectures, the control of encryption services may be done by the PAMS rather
than the AS. In these cases, this message would not be used, since it would overwrite the
Control Words downloaded by the system controller. The automation system may still need
to know which messages are to be encrypted and which CW_index to assign to specific
messages. The mechanism for doing so is not defined in this document.

44

Table 8-9 - update_ControlWord_data

Syntax Bytes Type

update_ControlWord_data() {

 CW_index 1 uimsbf

 CW_A 8 uimsbf

 CW_B 8 uimsbf

 CW_C 8 uimsbf

}

8.4.3.1 Semantics of fields in update_ControlWord_data()

CW Index – This field specifies the control word index used to reference the control
word database. This field may range from 0 to 255. The index sent indicates which of the
256 Control Word set should be replaced in the Injector’s Control Word database.

Each Control Word set is 3 64-bit numbers. The two Single DES encryption modes only
use CW_A, while Triple-DES requires all 3 64-bit Control Words. All 3 fields are
always sent, but if Triple-DES is not used, CW_B and CW_C shall be zeros.

CW_A – ControlWord_A, a 64-bit value which is always used. In the case of the two
Single DES encryption modes, CW_A is used alone (CW_B and CW_C are zero filled),
while Triple-DES requires all 3 64-bit control words.

CW_B – The second 64-bit number sent as a Control Word. This value is normally
zero unless Triple-DES encryption is utilized, in which case it carries the second of the
three control word values.

CW_C – The third 64-bit number sent as a Control Word. This value is normally zero
unless Triple-DES encryption is utilized, in which case it carries the third of the three
control word values.

8.4.4 delete_ControlWord request AS ==> IJ

This is a Control usage request. If an Encryption Group is no longer required, then this
request can be sent to remove the Control Words from the Injector’s database. This is only

45

really necessary if one wishes to prevent messages from being sent with this Control Word,
since empty Control Word index slots results in an alarm if an attempt is made to use it.

The Injector shall not produce an alarm if an undefined Control Word is deleted. This allows
the AS to delete all control words without actually knowing what Control Words are present,
so the Control Word database can be reinitialized.

In some architectures, the control of encryption services may be done by the PAMS rather
than an automation controller. In these cases, this message would not be used, since it would
delete the control words downloaded by the PAMS.

Table 8-10 - delete_ControlWord_data

Syntax Bytes Type

delete_ControlWord_data() {

 CW_index 1 uimsbf

}

8.4.4.1 Semantics of fields in delete_ControlWord_data()

CW Index – This field specifies the control word index used to reference the control
word database. This field ranges from 0 to 255.

8.5 Component Mode Support

8.5.1 component mode DPI request

The component mode DPI request is used for applications that wish to splice into some of the
elementary streams of a program, and not others. This is an advanced method of DPI control
that requires detailed knowledge of the structure of the program elements that exists in the
same program as this DPI splice_info_section.

It is a Supplemental type request (see Section 7.3.1) and must follow the
splice_request_data() for which it applies within the data() structure of the
multiple_operation_message (see Section 7.2.3).

The presence of this request changes fundamental syntactic elements in the resulting SCTE
35 [1] splice_info_section() as the request will force component mode rather than program
mode operation in the splicer.

46

Table 8-11 - component_mode_DPI_request_data

Syntax Bytes Type

component_mode_DPI_request_data() {

 for(i=0; i<N; i++) {

 component_tag 1 uimsbf

 component_preroll 2 uimsbf

 }

}

8.5.1.1 Semantics of fields in component_mode_DPI_request_data()

component_tag – This field contains the associated component tag for one of the
elementary streams to be spliced. The loop provides a complete list of spliced elementary
streams and the time at which the splice should occur.

component_preroll – The overall request timestamp provides the exact time to process
the message. In component mode, each component (i.e. Elementary stream PID) has a
unique time at which its splice is to occur. The actual SCTE 35 [1] timestamp can be
calculated by adding the pre-roll time to the timestamp() reference point.

When operating in component mode splicing, the value of pre_roll_time given in the
corresponding splice_request message is not used.

This field is expressed in milliseconds.

8.6 Response Messages

8.6.1 general_response message IJ ==> AS

The general_response message conveys back a result code. This is a basic message.

47

Table 8-12 - general_response_data

Syntax Bytes Type

general_response_data() {

}

This response message is sent following the receipt of the following messages:

Table 8-13 – general responses

Request Description

update_ControlWord This allows the AS to download a new CW for use in
encrypted messages.

delete_Control_Word This allows the AS to delete an active CW. Once deleted, an
Injector can flag an error if any attempt is made to use it.

8.6.2 inject_response message IJ ==> AS

The inject_response message conveys back the message_number from the
multiple_operation_message() structure (Section 7.2.3) to which it is responding. This
message can contain a result code if appropriate. This is a basic message.

A Proxy Device may respond with a “Proxy Response” result code (see Table 13-1). This
permits the Automation System, should it desire to do so, to track whether or not a given
Injector is served by a Proxy Device or a direct connection.

48

Table 8-14 - inject_response data

Syntax Bytes Type

inject_response_data() {

message_number 1 uimsbf

}

8.6.2.1 Semantics of fields in inject_response_data()

message_number – The message_number of the multiple_operation_message() that is
being acknowledged.

The inject_response message is sent following the receipt of the following messages:

Table 8-15 – inject_responses

Request Description

splice_request Acknowledgement for splice_request – returned to the AS
immediately to acknowledge receipt of the command

time_signal_request Acknowledgement for time signal request – returned to the
AS immediately to acknowledge receipt of the command

splice_null_request Acknowledgement for splice null request – returned to the
AS immediately to acknowledge receipt of the command

proprietary_command_request Acknowledgement for proprietary command request –
returned to the AS immediately to acknowledge receipt of
the command

start_schedule_download_request Indicates to an Injector that it should start collecting
schedule information.

schedule_definition_request Used to download a single schedule entry into the
Injector’s database.

schedule_component_mode
request

Used as a supplemental command for Schedule Definition
to indicate that a component splice is being scheduled.

transmit_schedule_request The Automation System uses this command to tell an
Injector to send the accumulated schedule information.

49

8.6.3 inject_complete response IJ ==> AS

The inject_complete_response message is sent once when the Injector finishes issuing all
SCTE 35 [1] splice_info_sections for a given Normal request operation and conveys back the
message_number from the multiple_operation_message() structure (Section 7.2.3) to which
it is responding. If a Normal request does not result in the issuing of any SCTE 35
splice_info_sections, then this response is not sent. The value of the message_number
variable is now free to be re-used.

A single inject_complete_response message is sent regardless of the number of operations
contained within a given multiple_operation_message() structure. The
inject_complete_response message contains a count which indicates the number of SCTE
35 splice_info_sections issued by Injector in response to the previous splice_request. A
result value of “Successful Response” will normally be expected for this message. See Table
13-1 for the various result codes.

Table 8-16 - inject_complete response data

Syntax Bytes Type

inject_complete_response_data() {

message_number 1 uimsbf

cue_message_count 1 uimsbf

}

A Proxy Device may respond with a “Proxy Response” result code (see Table 13-1). This
permits the Automation System, should it desire to do so, to track whether or not a given
Injector is served by a Proxy Device or a direct connection.

8.6.3.1 Semantics of fields in inject_complete_response_data()

message_number – message number of the multiple_operation_message() that has
completed processing.

cue_message_count – this an integer value that specifies the count of SCTE 35 [1]
splice_info_sections sent by Injector. This value may be logged by the Automation
System if desired. The Injector will clear the cue_message_count after each
inject_complete_response is sent to the Automation System.

50

The inject_complete_response message is sent following the injection the SCTE 35 [1]
section in response to the following messages:

Table 8-17 – inject_complete_responses

Request Description

splice_request Acknowledgement for splice request – returned after the
DPI message has been injected into the transport. May be
returned immediately after the Splice Response if
immediate mode timing is used. May be delayed if time
stamped processing is used.

time_signal_request Acknowledgement for Time Signal request – returned after
the DPI message has been injected into the transport. May
be returned immediately after the Splice Response if
immediate mode timing is used. May be delayed if time
stamped processing is used.

splice_null_request Acknowledgement for Splice Null request – returned after
the DPI message has been injected into the transport. May
be returned immediately after the Splice Response if
immediate mode timing is used. May be delayed if time
stamped processing is used.

proprietary_command_request Acknowledgement for Proprietary Command request –
returned after the DPI message has been injected into the
transport. May be returned immediately after the Splice
Response if immediate mode timing is used. May be
delayed if time stamped processing is used.

transmit_schedule_request Indicates the schedule data has been has been injected into
the transport

8.7 SCTE 35 splice_schedule() Support Requests

The DPI schedule requests may exist in multiple sections within a transport. Each section
contains a descriptor loop. All sections of a given schedule will contain the exact same
descriptors.

If the avail descriptor is to be present, then it is filled from the data provided in the start schedule
download request. This allows the each section to be built as the data is being downloaded.

51

If other descriptors are to be present, those requests follow in data(), and the insert_descriptor
requests must be present in the same message that carries this request. Those descriptors will
then be duplicated in each real section generated. The Injector must have enough memory to
hold the descriptors as well as the schedule data.

8.7.1 start schedule download request AS ==> IJ

The SCTE 35 [1] standard allows for a schedule of avail times to be broadcast. This request
readies the Injector to accept one or more schedule_definition_data() requests prior to
transmission. Since a schedule can potentially have a large amount of data, provision has
been made to download the data in smaller pieces.

The start schedule download message permits generation of a SCTE 35 [1] avail_descriptor.
It is a Normal type message. The Injector must allocate sufficient memory to permit the
accumulation of the maximum amount of section data specified by SCTE 35 [1]. A
splice_request is not required in conjunction with splice_schedule.

If the schedule request is intended to be encrypted before being sent, then the
Encrypted_DPI_data() structure must be included in the same multiple_operation_message
data() structure (see Section 7.2.3) as this start_schedule_download_data() structure. In this
case ONLY, it must be placed in the data()structure before the
start_schedule_download_data() structure is placed in the data() structure. By setting up the
encryption before downloading the data, any intermediate sections that might be created can
also be encrypted.

The SCTE 35 [1] splice_info_section() structure only allows one descriptor loop for an entire
schedule splice_info_section. Therefore, any Supplemental requests that generate descriptors
must be attached to the Start Schedule Request. These descriptors will then be inserted in all
splice_info_section generated as a result of the schedule download.

Table 8-18 - start_schedule_download_request_data

Syntax Bytes Type

start_schedule_download_request_data() {

 num_provider_avails 1 uimsbf

 for (i=0 ;i< num_provider_avails; i++) {

 provider_avail_id 4 uimsbf

 }

}

52

8.7.1.1 Semantics of fields in start_schedule_download_request_data()

num_provider_avails – If this field is zero, then the provider avail id field is not being
used and the value should be ignored and no avail_descriptor will be created.

If this field is non-zero, then the provider avail id field(s) must contain valid data.

provider_avail_id – This is an optional 32-bit number which will be inserted into the
SCTE 35 [1] splice_info_section() avail_descriptor.

Please refer to Section 8.3.1 of SCTE 35 [1] for more information.

8.7.2 schedule definition request AS ==> IJ

This request allows a single avail definition to be collected by the Injector. Using the overall
message structure, it is possible to deliver multiple splice point definitions in the same
resultant splice_info_section(). This request will be issued once per splice event to be
included in that splice_info_section().

A splice definition being transmitted must be contained within a SCTE 35 [1]
splice_info_section() structure. This section has a limited size of 4096 bytes, although some
implementations may have lower maximum sizes. If a schedule being transmitted exceeds the
local maximum memory allocated, it is possible that the first resultant section could be
formatted, packetized, and placed in the Transport Stream before the transmit_schedule
request is sent to force transmission and thus make space for more schedule data in the local
memory of the Injector.

This is a Supplemental request and must follow a start_schedule_download_data() in the
data() structure of a multiple_operation_message().

53

Table 8-19 - schedule_definition_data

Syntax Bytes Type

schedule_definition_data() {

 splice_schedule command 1 uimsbf

 splice_event_id 4 uimsbf

 time() 4

 unique_program_id 2 uimsbf

 auto_return 1 uimsbf

 break_duration 2 uimsbf

 avail_num 1 uimsbf

 avails_expected 1 uimsbf

}

8.7.2.1 Semantics of fields in schedule_definition_data()

splice_schedule command – This field indicates if the associated SCTE 35 [1]
splice_schedule() section generated will be a splice insert (away from the network) or a
splice return to the network. A cancellation may also be signaled.

Table 8-20 - splice_schedule command type Assigned Values

splice_schedule_command
_type

Value
assigned

reserved 0
splice_insert 1
reserved 2
splice_return 3
reserved 4
splice_cancel 5

splice_event_id – This is a 32-bit number that will be coded into the splice_event_id in
the final SCTE 35 [1] splice_info_section.

time() – See Section 11.4. A 32-bit unsigned integer quantity representing the time of
the signaled splice event as the number of seconds since 00 hours UTC, January 6, 1980,

54

with the count of intervening leap seconds included. See RFC 1302 [Informative 19] for
further information.

unique_program_id – This is a 16-bit field as defined by SCTE 35 [1].

auto_return – If this field is non-zero, then the auto_return field in the resulting
break_duration() of the SCTE 35 [1] section will be set to one.

break_duration – A 16-bit field giving the duration of the insertion in tenths of
seconds. If break_duration is set to zero, then the resulting SCTE 35 [1]
splice_schedule() section will not include the break_duration() and the flags auto_return
and duration_flag will be set to zero.

avail_num – This is an 8-bit number indicating which avail within the program is
currently being described (see SCTE 35 [1]). It will be coded as a decimal number from 1
to 255. A value of zero indicates that the avail fields are not being used. If this field is
coded as zero, so should the avails_expected field.

avails_expected – This is an 8-bit number indicating how many avails to expect within
the program currently being described (see SCTE 35 [1]). It will be coded as a decimal
number from 1 to 255. A value of 0 indicates that the avail fields are not being used. If
this field is coded as zero, so should the avail_num field.

8.7.3 The schedule component mode request AS ==> IJ

The schedule_component_mode request is used for applications that wish to splice into some
of the elementary streams of a program, and not others. This is an advanced method of DPI
control that requires detailed knowledge of the structure of the program elements that exists
in the same program as this DPI message. If component mode is used for a specific avail,
then this structure may be delivered along with the associated schedule_definition_data()
structure to define the components that will be spliced in that avail.

Table 8-21 - schedule_component_request_mode

Syntax Bytes Type

schedule_component_mode_request_data() {

 for(i=0; i<N; i++) {

 component_tag 1 uimsbf

 time() *

 }

}

55

8.7.3.1 Semantics of fields in schedule_component_mode_request_data()

component_tag – This field contains the associated component tag for one of the
elementary streams to be spliced. The loop provides a complete list of spliced elementary
streams and the time at which the splice should occur.

time() – See Section 11.4. A 32-bit unsigned integer quantity representing the time of
the signaled splice event as the number of seconds since 00 hours UTC, January 6, 1980,
with the count of intervening leap seconds included. See RFC 1302 [Informative 19] for
further information.

8.7.4 transmit_schedule request

This is a Normal usage request. When this request is processed, any schedule data saved in
local memory is packetized and transmitted at the time indicated.

A downloaded schedule is not remembered after it has been transmitted, and the Injector may
immediately free-up allocated local memory. The automation device is responsible for
retransmitting up-to-date schedule information when required.

Table 8-22 - transmit_schedule_request_data

Syntax Bytes Type

transmit_schedule_request_data() {

 cancel 1 uimsbf

}

8.7.4.1 Semantics of fields in transmit_schedule_request_data()

cancel – This flag is used to cancel any downloaded data and abort the transmission of
the schedule in progress. A value of zero is normal, and indicates that the downloaded
data can be transmitted at the time that the timestamp indicates. Any non-zero value
indicates that the download should be cancelled.

If this request is cancelled before being processed, then the entire schedule downloaded is
also discarded. The effect is the same as if this request was sent with the cancel bit set.

56

8.8 Miscellaneous Requests

8.8.1 time signal request AS ==> IJ

This is a Normal request which will be generated and transmitted at the time indicated by the
timestamp() field of the multiple_operation_message() structure. This request will normally
be accompanied by one or more insert_descriptor requests.

Table 8-23 - time_signal_request_data

Syntax Bytes Type

time_signal_request_data() {

 pre-roll_time 2 uimsbf

}

8.8.1.1 Semantics of fields in time_signal_request_data()

pre-roll_time – The splice splice_info_section may be sent by the automation system
well in advance of when it is required. In order to support repeated sending of the same
splice_info_section and to support multiple sections being outstanding simultaneously,
this request supports the preloading of its parameters. The timestamp() indicates the time
to process the splice_info_section. The pre-roll field indicates the amount of time, in
milliseconds, after being processed that the action will occur. For the
time_signal_request() this is the pre-roll for the associated descriptors. If this request
arrives after the indicated time, the splice_info_section is sent as soon as possible.

The timestamp field can indicate immediate processing (and therefore uses relative
timing) or delayed processing (which uses exact timing). In all cases, the signaling point
is calculated relative to the time the Request is processed. The pre-roll field determines
the exact delay period for the splice point relative to the Request being processed.

If this Request is processed immediately on arrival, then the physical insertion of the time
signal request is as soon as it is received.

In the case of an exact timestamp using a UTC timecode, VITC timecode1 or GPI
triggering2, the Request is processed at the indicated time.

1 VITC timecode cannot be use to indicate the exact splice point. A common practice is to use the timecode recorded
with the program rather than a 24-hour studio timecode. This means that the VITC timecode is discontinuous around
the start/end of the program. It would be impossible to determine the proper splice point since one cannot simply

57

In the case when a component mode request is used to modify this basic request, the
overall pre-roll time is not used. That is, this field is only used when the DPI
splice_info_section produced is for a program mode splice. For component mode
splicing, each component will have its own time stamp.

8.8.2 splice null request

This is a Normal usage request. When this request is processed, an SCTE 35 [1]
splice_null() splice_info_section will be generated and transmitted at the time indicated by
the timestamp field. This request will normally be accompanied by one or more
insert_descriptor requests.

Table 8-24 - splice_null_request_data

Syntax Bytes Type

splice_null_request_data() {

}

8.8.3 inject section data request AS ==> IJ

This is a Normal usage request. When this request is processed, the image will be copied
into the command structure of the associated SCTE 35 [1] splice_info_section being created.
Some Supplemental requests, such as an insert descriptor request or encrypted_DPI request
may be used with this request.

subtract the preroll time from the desired VITC time. Doing so may bring the VITC time cross a discontinuity and
would never match a time found on the input.

2 GPI (General Purpose Input) is generally used when co-timing to analog cue tone systems. Using a 3rd party box,
the analog cue tone can be converted to a GPI pulse. This would occur at the insertion point of the cue tone, not the
splice point. So, the pulse is occurring at the preroll time before the actual splice point.

58

Table 8-25 - inject_section_data_request

Syntax Bytes Type

inject_section_data_request() {

 SCTE35_command_length 2 uimsbf

 SCTE35_protocol_version 1 uimsbf

 SCTE35_command_type 1 uimsbf

 SCTE35_command_contents() *

}

8.8.3.1 Semantics of fields in inject_section_data_request()

SCTE35_command_length – This field encodes the number of bytes in the
SCTE35_command_contents() structure.

SCTE35_protocol version – When the SCTE 35 [1] splice_info_section() is created,
the protocol version field in the Splice Info Section will be filled in with this value. This
could allow a compatible method of delivering commands defined in future revisions of
SCTE 35 [1] using older versions of this protocol.

SCTE35_command_type – This field will fill in the value of the
splice_command_type field in the SCTE 35 [1] splice_info_section() being created.

SCTE35_command_contents() – This is a complete binary image of the SCTE 35 [1]
splice_info_section() being created, following the splice_command_type field up to, but
not including, the descriptor_loop_length field.

8.8.4 insert_avail_descriptor request AS ==> IJ

This is a Supplemental usage request. When this request is processed, an avail_descriptor()
shall be added to the descriptor loop of the associated SCTE 35 [1] splice_info_section being
created. The Normal request to which it applies must exist earlier in the same data() buffer.

59

Table 8-26 - insert_avail_descriptor_request_data

Syntax Bytes Type

insert_avail_descriptor_request_data() {

 num_provider_avails 1 uimsbf

 for (i=0 ;i< num_provider_avails; i++) {

 provider_avail_id 4 uimsbf

 }

}

8.8.4.1 Semantics of fields in insert_avail_descriptor_request_data()

num_provider_avails – If this field is zero, then the provider_avail_id field is not being
used and the value shall be ignored.

If this field is non-zero, then the num_provider_avails field is the repetition count for
the provider_avail_id field. Also, the Injector must include an avail_descriptor()in the
DPI splice_info_section created.

provider_avail_id – This is an optional 32-bit field which may be inserted into the
resulting SCTE 35 [1] splice_info_section. If the value of num_provider_avails is zero,
this field shall be ignored and no avail_descriptor() shall be created.

8.8.5 insert_descriptor request AS ==> IJ

This is a Supplemental usage request. When this request is processed, the descriptor image
will be copied into the descriptor loop of the associated SCTE 35 [1] splice_info_section
being created. One of the Normal requests must exist earlier in the same data() buffer and
these descriptors will be added to any SCTE 35 [1] section generated by that Normal request.

60

Table 8-27 - insert_descriptor_request_data

Syntax Bytes Type

insert_descriptor_request_data() {

 descriptor_count 1 uimsbf

 for(i=0; i< descriptor_count ; i++) {

 descriptor_image() *

 }

}

8.8.5.1 Semantics of fields in insert_descriptor_request_data()

descriptor_count – This field encodes the number of descriptors following.

descriptor_image – This field carries a complete image of a standard SCTE 35 [1]
descriptor, which follows MPEG-2 rules and has its length as the second byte of the
descriptor. This request is used to inject proprietary, or future standard descriptors into a
request without need for specific knowledge of the contents of the descriptor to be
injected. For standard descriptors, the recommended method is to update this protocol to
include a request for the new descriptor.

8.8.6 insert_DTMF_descriptor request AS ==> IJ

This is a Supplemental usage request. This request creates an image of the DTMF descriptor
defined in SCTE 35 [1]. Refer to SCTE 35 [1] for details of each field in the descriptor.

One specific note about this descriptor. The pre-roll field found in this descriptor is intended
to be the same value as that used for the associated splice_request. The DTMF descriptor
allows for tenths of a second resolution, and the splice_request allows millisecond resolution.
One should ensure that both requests use the same pre-roll value to provide a consistent
program insertion on both analog and digital systems.

61

Table 8-28 - insert_DTMF_descriptor_request_data

Syntax Bytes Type

insert_DTMF_descriptor_request_data() {

 pre-roll 1 uimsbf

 dtmf_length 1 uimsbf

 for(i=0; i<dtmf_length; i++) {

 DTMF_char 1 uimsbf

 }

}

8.8.6.1 Semantics of fields in insert_DTMF_descriptor_request_data()

pre-roll – Refer to SCTE 35 [1] for detail usage of this field.

The pre-roll time encodes the number of tenths of seconds before the splice_point
signaled in the resulting SCTE 35 [1] section that a DTMF tone sequence should finish
being emitted. To allow for processing time, the pre-roll signaled in the SCTE 35
message should be greater than this value.

dtmf_length – This indicates the length of the following loop in bytes.

DTMF_char – This field carries one character of a DTMF sequence to be output by an
IRD. This field should contain one of the ASCII characters ‘0’ through ‘9’, ‘*’, ‘#’, and
‘A’ through ‘D’. Refer to SCTE 35 [1] for detailed usage of this field.

8.8.7 insert_segmentation_descriptor request AS ==> IJ

This is a Supplemental usage request, and creates a Segmentation descriptor defined in SCTE
35 [1]. Refer to SCTE 35 [1] for details of each field in the descriptor. The
program_segmentation_flag shall be set to one in the resulting SCTE 35 [1]
splice_info_section(). If the user needs to support component mode segmentation, then an
insert_descriptor request should be used to directly format this descriptor.

62

Table 8-29 – insert_segmentation_descriptor_request_data

Syntax Bytes Type

insert_segmentation_descriptor_request_data() {

 segmentation_event_id 4 uimsbf

 segmentation_event_cancel_indicator 1 uimsbf

 duration 2 uimsbf

 segmentation_upid_type 1 uimsbf

 segmentation_upid_length 1 uimsbf

 segmentation_upid varies uimsbf

 segmentation_type_id 1 uimsbf

 segment_num 1 uimsbf

 segments_expected 1 uimsbf

 duration_extension_frames 1 uimsbf

 delivery_not_restricted_flag 1 uimsbf

 web_delivery_allowed_flag 1 uimsbf

 no_regional_blackout_flag 1 uimsbf

 archive_allowed_flag 1 uimsbf

 device_restrictions 1 uimsbf

}

8.8.7.1 Semantics of fields in insert_segmentation_descriptor_request_data()

segmentation_event_id – A 4 byte (32-bit) unique segmentation event identifier.

segmentation_event_cancel_indicator – A 1 byte flag that when set to ‘1’ indicates that
a previously sent segmentation event, identified by segmentation_event_id, has been
cancelled.

duration - A 2 byte (16-bit) field giving the duration of the program segment in whole
seconds. A zero value is legal and results in the segmentation_duration_flag in the
resulting SCTE 35 [1] section being set to ‘0’. See duration_extension_frames.

63

segmentation_upid_type – An 1 byte field that specifies the type of “UPID” utilized in
this program. There are multiple types allowed to insure that programmers will be able to
use an id that their systems support. Refer to SCTE 35 [1] for full details.

segmentation_upid_length – An 1 byte field that specifies the length in bytes of the
segmentation_upid.

segmentation_upid – An variable-length field that specifies the “UPID” value for this
segment. Refer to SCTE 35 [1] for details.

segmentation_type_id – An 1 byte field which designates type of segmentation and
takes values specified in SCTE 35 [1].

segment_num – A 1 byte field that provides identification for a specific chapter within
a segmentation_upid. Refer to SCTE 35 [1] for full details.

segments_expected – A 1 byte field that provides a count of the expected number of
individual chapters within the current segmentation event.

duration_extension_frames – A one byte field that shall carry a value in the range from
0 to the value of the greatest integer less than frame rate, which shall be the number of
frames in the fractional second not included in duration. The total duration of the
program segment is duration seconds plus duration_extension_frames frame times. If
duration is 0 this field caries no meaning.

NOTE: In SCTE 35 [1], content length is described in terms of the number of ticks of a
90 kHz MPEG counter. A value in these units is calculated from duration and
duration_extension_frames by converting duration using Section 4.1.1 of SMPTE EG40
Informative Reference 5], converting duration_extension_frames using Section 4.2 of
SMPTE EG40 [Informative Reference 5], and adding the resulting values.

delivery_not_restricted_flag – A one byte flag that when set to 1 indicates there is no
need for external checks prior to delivery. A value of 0 indicates the content requires
external checks. Refer to SCTE 35 [1] for full details.

web_delivery_allowed_flag – A one byte flag that when set to 1 indicates web delivery
is allowed. Refer to SCTE 35 [1] for full details.

no_regional_blackout_flag – A one byte flag that when set to 1 indicates there is not a
regional blackout. Refer to SCTE 35 [1] for full details.

archive_allowed_flag – A one byte flag that when set to 1 indicates the content is
archiveable. Refer to SCTE 35 [1] for full details.

device_restrictions – A 1 byte field which designates type of segmentation and takes
values specified in SCTE 35 [1].

64

8.8.8 proprietary_command request AS ==> IJ

This is a Normal usage request, and allows for proprietary extension to the protocol. The
data_length field functions in the normal manner for the data() loop within the context of
multiple_operation_message().

The opID variable for the proprietary_command_data() is one of the values defined in Table
7-3 for user defined requests. In addition to using this opID value, each company that wishes
to define proprietary SCTE 35 [1] commands should register for a proprietary id value. This
permits the company to create one or more proprietary commands that are uniquely theirs,
each identified by their respective proprietary_command_data() structure.

The data_length field in multiple_operation_message() (See Section 7.2.3) the must be
correctly set to reflect the number of bytes utilized by the remainder of the request which
follows the data_length field itself. Failure to do so will result in the commands not being
processed correctly.

Table 8-30 - proprietary_command_request_data

Syntax Bytes Type

proprietary_command_request_data() {

 proprietary_id 4 uimsbf

 proprietary_command 1 uimsbf

 for (i=0; i<data_length-5; i++) {

 proprietary_data() *

 }

}

65

8.8.8.1 Semantics of fields in proprietary_command_request_data()

proprietary_id – This number is a 32-bit identifier that has been registered for a
specific company. The contents of the command and the definition of how to process the
command are proprietary. All definitions are beyond the scope of this document.

proprietary_command – This is a field, similar to the opID tag, which identifies
individual proprietary commands for each proprietary id. The meaning of this field is not
defined, but must follow the basic rules for the protocol.

proprietary_data() – This is a variable length field that contains the data for the specific
proprietary command. The amount of data contained in the command can be determined
from the overall length field for this command.

The definition for this data is not specified, but it must follow the basic rules for the
protocol.

8.8.9 insert_tier_data request AS ==> IJ

This is a Supplemental usage request. When this request is processed, the tier value shall be
copied into the associated SCTE 35 [1] splice_info_section being created. One of the Normal
requests shall be placed earlier in the same data() buffer and this value will be added to the
SCTE 35 [1] section generated by that Normal request. If this request is missing, the Injector
shall insert the value of 0xFFF into the tier field in the associated SCTE 35 [1]
splice_info_section being created.

Table 8-31 - insert_tier_data

Syntax Bytes Type

insert_tier_data() {

 tier_data 2 uimsbf

}

8.8.9.1 Semantics of fields in insert_tier_data()

tier_data – A field with the most significant nibble set to 0x0 and containing, in the
lower 12-bits, a value with semantics as specified in SCTE 35 [1] for “tier.”

66

9.0 PAMS TO THE AUTOMATION SYSTEM COMMUNICATIONS

The PAMS to the Automation System Communications are an optional, but normative section of
this Standard. The PAMS is defined in logical terms, and no particular implementation is
expected. The reader is reminded that PAMS is an acronym for “Provisioning and Alarm
Management System.”

The messages defined within this section supply the required standard mechanisms for a bi-
directional data communication system to support the following functional requirements:

• System Initialisation and Service Discovery

• Data Communications Channel Maintenance (sometimes called “heartbeat”)

• System Restart from Maintenance or Redundancy Change

• Injector Provisioning and de-provisioning in real-time

• Service Addition and Subtraction in real-time

• Failure Reporting

• Appropriate Reaction to Failures

Additional functionality may be added, provided the core messages are compliant and function as
described.

9.1 System Design Philosophy

The data communications between the PAMS and the AS is expected to be truly “peer to peer.”
This translates to, in outline form, that these communications must be:

• Best effort communications – if a link is down and no other path is available,
notify a human operator, but do not treat the link as de-provisioned

• Notification of outages is not expected

• Restarts are expected

• Non-volatile storage of system and API parameters is expected

• Data Communications Channel Maintenance messages are optional

• Full-time availability is not required for all aspects of the system (only Injector
signalling and redundancy handling)

• A wide variety of system implementations are possible

• The PAMS may not be a full-time participant in the overall system operation – it
may divide functions between AMS (Alarm Management), which is expected to
be full-time (and possibly not implemented in devices which have direct User
Interfaces) and P (Provisioning), which may be available only on an “as needed”
basis, when the operations staff needs to change a given device’s specific
provisioning.

67

Uni-directional systems are not expected to utilize the messages specified in this section, and
could accomplish all of the same logical functions via manual initialization and coordination.
The necessary functions are outlined above.

Bi-directional system implementers are free to choose to support these messages or not, however
they must all be supported if any are. The user can be advised simply “PAMS support” or “no
PAMS support” as regards a particular implementation.

9.1.1 TCP/IP Data Communications

In a bi-directional system utilizing TCP/IP, the communication shall be purely peer-to-peer.
Some system operators may desire a heartbeat remain active between the two. This is
provided as an optional extension.

If either the Automation System or the PAMS fails, there is no need to notify the other (or
distribute alarms). When the failed system is again ready to function, it should issue either a
config_request message (Automation System) or a provisioning_request message (PAMS). If
one system attempts to communicate with the other and there is no response, it shall continue
functioning based on the last available configuration. Periodic retries shall be done until the
other system eventually responds and normal communications is again established.

9.1.2 Bi-directional Serial Data Communications

As with TCP/IP, the communication is also peer-to-peer. Failures must be tolerated with
alarm notification to the appropriate operational staff and periodic retries if the sender has
need to communicate with the receiver (a failure notification to deliver, for example).

9.2 PAMS Functionality

As outlined above, the basic functionality divides into the following areas outlined in detail
below. Each of these will be considered briefly in order:

9.2.1 System Initialization and Service Discovery

Initialization should happen (ideally) once when a system is first commissioned, and then
never again. It is recognized that this is naïve, and messages are provided for re-starting both
an AS and the PAMS.

Handled by the config_request, the config_response, the provisioning_request, and the
provisioning_response messages. Please refer to Sections 9.4.1, 9.4.2, 9.5.1, and 9.5.2.

9.2.2 Data Communications Channel Maintenance

Capabilities are provided for PAMS to AS “link alive” messages if desired by the end-user.

Handled by the AS_alive request and the AS_alive response messages. Please refer to
Sections 9.7.1 and 9.7.2.

68

9.2.3 System Restart from Maintenance or Redundancy Change

Messages are provided for re-starting both an AS and the PAMS.

Handled by the config_request, the config_response, the provisioning_request, and the
provisioning_response messages. Please refer to Sections 9.4.1, 9.4.2, 9.5.1, and 9.5.2.

9.2.4 Injector Provisioning and de-provisioning in real-time

The specifics of provisioning and de-provisioning of injectors is dealt with in Section 10.0
and are not further specified, except from a logical viewpoint. Notification is handled via the
provisioning_request and the provisioning_response messages. Please refer to Sections 9.5.1,
and 9.5.2.

9.2.5 Service Addition and Subtraction in real-time

Handled by the provisioning_request and the provisioning_response messages. Please refer
to Sections 9.5.1 and 9.5.2.

9.2.6 Failure Reporting

Failure reporting is defined in this Section, and shall be present whenever the system is
operational. A number of implementation architectures will meet this requirement.

Handled by the fault_request and the fault_response messages. Please refer to Sections 9.6.1
and 9.6.2.

9.2.7 Appropriate Reaction to Failures

Injector replacement notification and action is defined in this Section, and shall be present
whenever the system is operational. A number of implementation architectures will meet this
requirement.

Notification is via the provisioning_request and the provisioning_response messages. Please
refer to Sections 9.5.1, and 9.5.2.

9.2.8 System Initialization

System Initialization is an infrequent event. This API defines messages to be utilized in bi-
directional systems to permit system to system notification of events and changes in status.
Both the AS and the PAMS shall expect notification messages from the other and process
them in manners which do not disrupt DPI or other services.

The definition of the PID or PIDs used for DPI service and their method of creation is beyond
the scope of this standard.

69

9.3 Service Continuity

Initialization (or re-initialization) of the communications between the AS and the PAMS shall
not cause interruption of any of the audio, video, or DPI services currently being processed by
either the AS or the DCS. Initialization can be safely conducted at any point in time. This
includes changes to Injector services or Injectors themselves. These events may be expected to
occur at random intervals.

9.4 System Initialization Messages

The manner in which the initial IP address for the PAMS is conveyed to the Automation System
is beyond the scope of this Standard.

In a bi-directional system utilizing TCP/IP, the initial communication begins with the PAMS
listening on predefined socket 5167 and the Automation System opening an API Connection to
the PAMS via that socket. The Automation System sends a config_request to the PAMS. The
Automation System then listens for the response from the PAMS and closes the API Connection.
For all further PAMS-to-the Automation System communication, the PAMS will use the IP
address and port number supplied in the Config_Request message. This message may also be
used to notify the PAMS of the Automation System redundancy switching.

9.4.1 config_request message AS ==> PAMS

When the PAMS receives config_request message, it will store the Automation System
configuration info for further use, and immediately respond with a config_response message.

This message shall be sent at system initialization, following AS downtime for whatever
reason, and upon AS redundancy switch requiring the PAMS to connect to a new IP address.

Table 9-1 - config_request_data

Syntax Bytes Type

config_request_data(){

 AS_IP_address 4 uimsbf

 AS_socket_number 2 uimsbf

 activeflag 1 uimsbf

 protocol_version 1 uimsbf

 last_AS_index 1 uimsbf

 last_injectorcount 2 uimsbf

 permanent_connection_requested 1 uimsbf

70

}

9.4.1.1 Semantics of fields in config_request_data()

AS_IP_address – IP address of the Automation System. In a bi-directional serial
communications system architecture, it shall be zero.

AS_socket_number – TCP port of the Automation System, waiting for incoming
communication from the PAMS In a bi-directional serial communications system
architecture, it shall be zero.

activeflag – Boolean flag indicating if this AS instance acts as a primary or a backup.
Zero indicates a the AS is a backup, non-zero indicates the AS is a primary.

protocol_version – An 8-bit unsigned integer which indicates the version number of the
protocol and which shall be 0x00.

last_AS_index – Value of the AS_index provided by the PAMS during a previous
system initialization. If used, it ranges from 1 to 255. If not used, or this is the first
system initialization, it is zero.

last_injectorcount – Value of the injectorcount last provided by the PAMS. Zero
during the first system initialization.

permanent_connection_requested – Non-zero indicates that maintaining a permanent
TCP/IP link has been provisioned on the AS side. The PAMS will not close the TCP/IP
socket after sending the provisioning_request message and will supply heartbeat
messages. A backup AS may request a permanent connection.

9.4.1.2 Detailed Discussion of Message Syntax and Semantics

Under normal circumstances the PAMS will communicate only with the Automation
System IP address with activeflag set to TRUE. The one exception is if the
provisioning_request message (see Section 9.5.1 for details) from the backup requests a
permanent connection be maintained.

When a backup AS instance takes over as primary, it shall send a config_request message
to the PAMS as a method of notifying the PAMS that a new IP address and socket must
be connected to. In this case, the AS supplies the value for AS_index initially furnished
at system startup.

9.4.2 config_response message PAMS ==> AS

The config_response message conveys back an index value later used to populate the
AS_index field in the single_operation_message() and multiple_operation_message()

71

structures (Sections 7.2.2 and 7.2.3) and indicates that the config_request message was
received. This message can also contain a result code (see Table 13-1) if appropriate.

For systems using TCP/IP data communications, once the PAMS sends this message, it will
immediately close the socket and re-open TCP/IP communications using the AS_IP_address
and AS_socket_number values from the config_request message. It will then send a
provisioning_request message (see Section 9.5.1) to the AS.

Table 9-2 - config_response_data

Syntax Bytes Type

config_response_data(){

 AS_index 1 uimsbf

 permanent_connection_requested 1 uimsbf

}

9.4.2.1 Semantics of fields in config_response_data()

AS_index – Index provided by the PAMS, ranging from 0 to 255. See Section 7.2.1
for a complete discussion regarding usage of this value.

When responding to a redundancy switch within a given AS, this shall be the same value
contained in the last_AS_index in the config_request message.

permanent_connection_requested – Non-zero indicates that maintaining a permanent
TCP/IP link has been provisioned on the PAMS side. If this is requested, the PAMS will
not close the TCP/IP socket after sending the provisioning_request message and will
supply AS_alive messages.

9.5 Injector Service Notification

The PAMS shall notify the AS of all active injectors at the time of system initialization or re-
initialization and shall notify the AS of any new injectors as they are provisioned. In a similar
manner, the PAMS shall notify the AS of any injectors which are de-provisioned.

A provisioning_request message is also sent by the PAMS upon re-initialization following either
downtime for maintenance, non-redundant failure, or redundant switchover. If AS_alive
messages had been requested, they would then be resumed following the receipt of a
provisioning_response message.

9.5.1 provisioning_request message PAMS ==> AS

72

PAMS will notify the Automation System of all injectors ready for use in DPI service via the
following structure. In some system architectures, the same IP address and socket may be
shared by different services with the Injector.

73

Table 9-3 - provisioning_request_data

Syntax Bytes Type

provisioning_request_data(){

 service_count 1 uimsbf

 for (i=0; i<service_count; i++) {

 injector_IP_address 4 uimsbf

 injector_socket_number 2 uimsbf

 service_name 32 bslbf

 number_of_DPI_PIDs 1 uimsbf

 for (i=0; i<number_of_DPI_PIDs; i++) {

 DPI_PID_index 2 uimsbf

 shared_PID 1 uimsbf

 cue_stream_type 1 uimsbf

 }

 component_mode 1 uimsbf

 if (component_mode != 0){

 injector_component_list()

 }

 }

}

9.5.1.1 Semantics of fields in provisioning_request_data()

service_count – specifies the number of services defined within the following loop.
Each iteration of the loop defines basic data for a given Injector Instance.

injector_IP_address - A standard 32-bit IP address. This is the IP address of the
injector. In systems not using TCP/IP communications, the value of this field shall be
zero.

injector_socket_number - A standard 16-bit socket number. In systems not using
TCP/IP communications, the value of this field shall be zero.

74

service_name - A case sensitive string value, terminated by a 0x00 byte giving the
service name. This value must be manually provisioned by both the AS and the PAMS
and must match. It is used to unambiguously identify the service. There may be
duplicate service_names only for hot backups.

number_of_DPI_PIDs - count of the number of DPI PIDs provisioned. This number
shall range from 1 to the limit specified in SCTE 35 [1] (see Normative Reference 1).

DPI_PID_index - The PID index for each specific DPI service. The value is not an
actual PID number, rather the index by which the AS may request the specific service
identified by cue_stream_type. This value populates the DPI_PID_index variable in
both the single_operation_message() and multiple_operation_message() structures (see
Sections 7.2.2 and 7.2.3). It is normally assigned a unique value unless a shared PID
situation is signaled by a non-zero value in shared_PID. The rules for usage of
DPI_PID_index are defined in Section 7.2.1.

shared_PID – A zero value indicates that the corresponding value of DPI_PID_index
is unique. A value of one indicates that the corresponding value of DPI_PID_index is
intentionally duplicated (typically the same video with different language audio tracks)
and that the AS should only communicate with one instance of DPI_PID_index. This
flag shall be set to one for all instances of the corresponding DPI_PID_index.

cue_stream_type - Identifies the type of cue stream. The values are taken from Table
6-3 of SCTE 35 [1] (see Normative Reference 1).

component_mode - Length of the injector_services_list (). A zero value indicates no
services_list is present.

injector_component_list () - See Section 9.8.1.

9.5.1.2 Detailed Discussion of Message Syntax and Semantics

The PAMS will send this message whenever the configuration for an Injector changes.
This could be during provisioning, removal, or reallocation after a failure. This approach
allows the Automation System to verify that its internal data structure is in sync with the
PAMS Injector configuration. If no injectors have been provisioned, then a zero
InjectorCount message is sent. This confirms to the Automation System that the PAMS
is active, even if no injectors have been provisioned for DPI service.

The AS is expected to check the consistency of the values assigned to DPI_PID_index
and to send the provisioning_response message with a result code of “Inconsistent value
of DPI PID index found” (see Table 13-1). If an expected common value of
DPI_PID_index is not found, then the AS should send the provisioning_response
message with a result code of “Shared value of DPI PID index not found” (see Table
13-1). If a common value of DPI_PID_index is found across physical injectors or in a
situation where the AS is not expecting a shared PID, then the AS shall send the

75

provisioning_response message with a result code of “Illegal shared value of DPI PID
index found” (see Table 13-1). Both the PAMS and the AS should produce alarms
immediately upon sensing this condition to permit the operations staff to resolve the
discontinuity.

If the user changes an Injector’s service_name value, then this message is sent again to
the Automation System.

PAMS will send this message to both a primary and a backup Automation System IP
address if such are defined.

The AS, the PAMS, and the Injectors shall all comply with the requirements of service
continuity outlined in Section 9.3 when processing this message.

9.5.2 provisioning_response message AS ==> PAMS

The provisioning_response message contains no data and indicates that the
provisioning_request message was received. This message may return a result code (see
Section 13.0) if appropriate. The AS is expected to return specific result codes in certain
circumstances. Please refer to the discussion of DPI_PID_index uniqueness in Section
7.2.1.

Table 9-4 – provisioning_response_data

Syntax Bytes Type

provisioning_response_data(){

}

9.6 Failure Notification Messages (Device or Communications)

The messages in this section shall be utilized by either the AS or the PAMS to notify the other of
failures in situations where the other system must take action in response to the notification.
Such action may take the form of an automatic response (for example a change of injectors
requiring a switch of IP addresses and an initialization of communications with the new Injector)
or notification of the system operator (for example an apparent communications failure). The
action taken in response to receipt of these messages may be operationally constrained, however
the minimal reaction of the recipient system shall be alarm notification to the system operator.

Notification of the AS of an Injector replacement shall utilize the provisioning_request message
defined in Section 9.5.1.

Since the AS can sense an apparent Injector failure, a message is provided for this specific
notification. The PAMS must be ready to accept Injector failure notification from the AS at any

76

point, before, during, or after it has processed any Injector failures that it may have detected on
its own. Operational procedures for handling such a failure will be system specific.

9.6.1 fault_request message AS ==> PAMS

This message permits the AS to notify the PAMS of a possible failure of either an Injector or
the data communications link to that Injector. Resultant action taken by the PAMS shall be
configurable by the operations staff of the DCS site. When automatic replacement is desired
by that staff, this message shall result in an automatic replacement of an Injector. The
minimum compliant response shall be the generation of an operator alarm.

As a result of receipt of this message, the PAMS may (if configured to do so) automatically
trigger a redundancy replacement of an Injector (which shall result in it sending a
provisioning_request message after the switch). It may also notify the operator or request
operator guidance. The specifics of the precise reaction to this message must be left to
operational provisioning of the PAMS and the DCS.

After sending a fault_request message and receiving a fault_response in return, the AS may
logically expect to receive a provisioning_request message at some point in the future to
notify the AS of the Injector change. In the mean-time, until such a notification is given, the
AS shall continue to periodically attempt to communicate with the Injector, since the link
failure may be only visible to the AS and operations personnel may restore the link based on
the fault_request notification. In such case, the AS shall re-establish the communications and
continue operating as if a failure had never been detected.

Table 9-5 - fault_request_data

Syntax Bytes Type

fault_request_data(){

 injector_IP_address 4 uimsbf

 injector_socket_number 2 uimsbf

 injector_service_name 32 bslbf

 DPI_PID_index 2 uimsbf

}

9.6.1.1 Semantics of fields in fault_request_data()

injector_IP_address - A standard 32-bit IP address. Zero if TCP/IP communications are
not being used.

77

injector_socket_number - A standard 16-bit socket number. Zero if TCP/IP
communications are not being used.

injector_service_name - A string value, terminated by a 0x00 byte giving the injector
service name. This value must match the name sent by the PAMS in the defining
provisioning_request message. It is used to unambiguously identify the service.

DPI_PID_index - The PID index for the specific DPI service which appears to have
failed. This field may be zero if the Injector can be unambiguously identified by the other
3 fields in this message. The rules for usage of this field are defined in Section 7.2.1.

9.6.2 fault_response message PAMS ==> AS

The fault_response message contains no data and indicates that the Fault Request message
was received. This message may return a result code (see Table 13-1) if appropriate,
including an indication of “no fault found”.

Table 9-6 - fault_response_data

Syntax Bytes Type

fault_response_data(){

}

9.7 PAMS to AS permanent “link alive” messages

Use of a permanent “link alive” messages (also called a “heartbeat”) between the PAMS and the
AS is optional in usage, depending upon operational provisioning. All PAMS and AS which
support messages within Section 9.0 of this document are expected to support this permanent
“link alive” messages functionality. Either system can request this service be initiated and the
other shall cooperate in maintaining it. Both TCP/IP and bi-directional serial systems shall
support “link alive” messages.

If loss of the link is detected by either the AS or the PAMS, it shall result in immediate operator
notification.

78

9.7.1 AS_alive_request PAMS ==> AS

This Basic request serves to ensure that the PAMS to AS communications path remains open
and reliable. If there has been no activity on the connection in the preceding 60 seconds, then
an AS_alive_request message shall be sent.

Table 9-7 - AS_alive_request_data

Syntax Bytes Type

AS_alive_request_data(){

}

9.7.2 AS_alive_response AS ==> PAMS

This Basic response serves to ensure that the AS to PAMS communications path remains
open and reliable.

Table 9-8 - AS_alive_response_data

Syntax Bytes Type

AS_alive_response_data(){

}

9.8 PAMS to AS Common Elements

9.8.1 injector_component_list() Definition

This structure defines the list of component services carried by a given Injector Instance.
This is utilized only if component mode splicing is supported.

79

Table 9-9 - injector_component_list()

Syntax Bytes Type

injector_component_list {

 video_component_tag 1 uimsbf

 number_of_audio_component_tags 1 uimsbf

for (i=0; i<number_of_audio_component_tags;
i++) {

 audio_component_tag 1 uimsbf

 }

 number_of_data_component_tags 1 uimsbf

for (i=0; i<number_of_data_component_tags;
i++) {

 data_component_tag 1 uimsbf

 }

}

9.8.1.1 Semantic definition of fields in injector_component_list()

video_component_tag - component_tag value of the video stream

number_of_DPI_PIDs - count of the number of DPI PIDs provisioned

number_of_audio_component_tags - count of the audio component_tags (hence the
index of the component_tag list)

audio_component_tag - component_tag value of each specific audio stream

number_of_data_component_tags - count of the data component_tags.

data_component_tag - component_tag value of each specific data service.

10.0 PAMS TO INJECTOR COMMUNICATIONS (INFORMATIVE)

The communications specifics between the Injector and the PAMS can be expected to be
proprietary and out of the scope of this document. This document will specify logical operations
which are necessary to ensure this API functions properly as a system.

80

10.1 The PAMS Implementation

It must be noted that the PAMS is a logical function which may be realized in real
implementations in a variety of manners. This API does not dictate any particular
implementation, rather specifies the logical functions the PAMS must realize. The only
mandated function is that there be a method of alerting the system operator of Injector or
communications failures.

This API does expect that the PAMS will store system configuration information in some non-
volatile storage media to ensure continuity in case of a hardware failure requiring replacement of
some component of the PAMS hardware.

10.2 Injector Provisioning

Injector provisioning will be done in response to operator input into the PAMS. Injector
provisioning includes notifying the Injector of the PID to be used for DPI splice_info_sections
and possibly setting other Injector parameters. Provisioning will also define the maximum
number of socket connections the Injector must make available for multiple Automation
Systems. Response by the Injector to this provisioning includes placing the SCTE 35 [1]
Registration Descriptor in the PMT for that service.

This API provides capabilities for multiple services per Injector as well as multiple AS. The
AS_index and DPI_PID_index fields in the various messages are utilized to ensure that in all
cases the AS, the Injector, and the service on that Injector can be uniquely identified.
Implementations which do not support one or more of these aspects simply constrain the values
of those fields to zero.

10.3 PAMS Structure

The provisioning of injectors is dealt with in Section 10.2 and is not further specified, except
from a logical viewpoint. The alarm management and the overall initialization aspects are within
scope, and are defined in this Section. Initialization should happen (ideally) once when a system
is first commissioned, and then never again. The initialization aspect of the PAMS might then
go offline. The alarm management aspect remains vigilant, however. A number of
implementation architectures will meet this requirement. For more information see Section 10.1.
There are requirements for service continuity specified in Section 9.3.

10.4 Support of multiple DPI PIDs

The attention of implementers must be drawn to the question of the DCS’s support of multiple
DPI PIDs. This refers to (1) multiple services per Injector, (2) multiple PIDs per service, (3)
multiple Injector Instances per data communications connection (i.e. per IP address or serial
link), (4) a combination of these, or (5) multiple Automation Systems connecting to a single
DCS. Please consult Section 7.2.1 for a comprehensive discussion of this topic.

This API provides a mechanism for unambiguous request addressing in a system supporting
multiple Injector Instances, namely the field named DPI_PID_index found in both

81

single_operation_message() and multiple_operation_message(). The value for each Injector
Instance is communicated by the PAMS to the Automation System via the field named
DPI_PID_index.

Assuming that the implementers wish to support multiple services and that such are provisioned
by the operational staff, the values returned in DPI_PID_index will be non-zero and provide the
Automation System an unambiguous method of identifying the desired service on a particular
data communications link. Please see Section 7.2.1 for additional background.

11.0 COMMON ELEMENTS

The following are the common syntactic elements used throughout this API. They are listed here
for ease of reference.

11.1 Values of splice_event_id used in this Interface

Splicers use the splice_event_id to determine when multiple messages refer to the same event
(insertion opportunity).

AS implementers should be aware of the splice_event_id uniqueness discussion in Section 5.3 of
SCTE 67 (Informative Reference [1]).

11.2 Values of unique_program_id used in this Interface

The usage of particular values for the unique_program_id field by servers and splicers is
outside the scope of this document. Once set by the AS, the value of the field is relied upon for
operations as defined by the syntax.

11.3 Minimum Pre-roll Time Supported by this Interface

In compliance with the requirements of SCTE 35 [1], and in keeping with the advice of SCTE
67, the minimum non-zero value of pre-roll time shall be 4000 milliseconds for a splice_request.
A zero value may be sent if splice_insert_type is spliceStart_immediate or
spliceEnd_immediate. If the Automation System is somehow notified of an event with less time
than the minimum, it might count itself down to the trigger time and request a
spliceStart_immediate operation.

SpliceEnd_normal shall use a pre-roll, even though it has been common practice in the industry
for a return command to be sent with zero pre-roll. SpliceEnd_immediate sets the immediate bit
which indicates an early return from a splice. It effectively aborts any content insertion currently
in progress.

Note: There is an important distinction between a pre-roll of zero and a splice return with the
immediate bit set. A spliceEnd_normal indicates that the content insertion should have ended
approximately at the time indicated, with or without a pre-roll value. Common industry practice
has been to ignore a normal return message in favor of finishing the playout of the content. Any
receive device may choose to use a return message as a sanity check, and if it determines that the

82

content will excessively exceed the time indicated, may choose to return to the network early and
flag an error.

11.4 time() Definition

This structure serves to carry the current time of day sample of the sender.

Table 11-1 - time()

Syntax Bytes Type

time() {

 seconds 4 uimsbf

 microseconds 4 uimsbf

}

11.4.1 Semantic definition of fields in time()

seconds – Elapsed seconds since 12:00 AM UTC January 6, 1980 with the count of
intervening leap seconds included.

microseconds – Offset in microseconds of the seconds field.

83

11.5 timestamp() Definition

This structure serves to carry both current and future time samples as well as contact closure
triggers.

Table 11-2 - timestamp()

Syntax Bytes Type

timestamp(){

 time_type 1 uimsbf

 if(time_type == 1) {

 UTC_seconds 4 uimsbf

 UTC_microseconds 2 uimsbf

 }

 if(time_type == 2) {

 hours 1 uimsbf

 minutes 1 uimsbf

 seconds 1 uimsbf

 frames 1 uimsbf

 }

 if(time_type == 3) {

 GPI_number 1 uimsbf

 GPI_edge 1 uimsbf

 }

}

11.5.1 Semantic definition of fields in timestamp()

time_type – If the value is set to 0, then there is no time required and the remainder of the
structure is empty. A value of 1 indicates that the time field has been setup for UTC time for
triggering a DPI splice_info_section. A value of 2 indicates that the time field has been setup
for SMPTE VITC timecode [see Informative Reference 4 for more information] for

84

triggering a DPI Splice_info_section. A value of 3 indicates that a GPI input is being used to
trigger a DPI splice_info_section.

Note: Non-zero values of time_type that are not currently defined are reserved for future
standardization. Any message received with a time_type it does not understand should be
ignored and an error code of “time type unsupported” returned to the requestor. This error
should not occur under normal circumstances, since the protocol_version will need to be
increased to support new definitions of time.

UTC_seconds – Elapsed seconds since 12:00 AM UTC January 6, 1980 UTC with the count
of intervening leap seconds included.

UTC_microseconds – Offset in microseconds of the UTC_seconds field.

hours – This field encodes the hour of the day in 24-hour time. Values range from 0 to 23.

minutes – This field encodes the minute of the hour. Values range from 0 to 59.

seconds – This field encodes the seconds of the minute. Values range from 0 to 59.

frames – This field encodes the frame within the current second. The range of values
changes based upon whether the system is 30 Hz or 25 Hz based video and whether or not the
frame rate is actually divided by 1.001. Typical values are 0 to 29 for 30 or 30/1.001 Hz
systems, and 0 to 24 for 25 Hz systems3.

GPI_number – This field encodes a number from 0 to 255 and indicates the GPI to use for
triggering the insertion of the DPI splice_info_section. The actual number of GPI’s available,
the GPI numbering and the edge used for triggering are details of implementation. The
automation system should know these details in order to choose a proper value for this field.
If the physical GPI does not exist, the Injector should discard the request and raise an alarm
to the operator.

GPI_edge – This field encodes the edge to use to trigger message processing. A value of 0
indicates a transition from open to closed. A value of 1 indicates a transition from closed to
open.

3 One should be aware that SMPTE VITC timecode allows dropped or repeated frames. If the automation system
should give a timestamp that is lost because the source dropped that frame, then the message should be generated on
the first frame following the dropped frame. Automation systems should avoid using timestamps near discontinuities
in the timecode. For example, if timecode 23:59:59:29 was given, but the source dropped this frame, then the
message would never be generated because it would never see a timecode higher than the specified timecode.

85

12.0 SYSTEM ARCHITECTURE AND PROVISIONING (INFORMATIVE)

12.1 One Way Protocol – Automation System to Injector

12.1.1 System Architecture Summary

This architecture assumes that an Automation System (AS) only connects with Injectors over
a one-way communication link. Figure 12-1 below shows the Injector as a black box within
the encoder. The protocol can use a link layer that is embedded in video (e.g. SDI VANC
area) or a serial communications protocol (e.g. RS-232) directly connected to the encoder.
The normal assumption for this type of system is that there is a single SCTE 35 [1] PID (or
DPI PID for short) generated for each encoder. This system is not limited to a single DPI PID
however, but extra provisioning will be required to support multiple DPI PID streams.

This system shows a simplified version of how SDI VANC embedding works. The
Automation System would maintain N serial outputs (4 in this example) one for each primary
encoder. Each of the serial data channels would be directed to an embedder for the specific
video channel that the DPI data is associated to. The SDI stream is then fed through a video
switcher for redundancy. The video stream may be directed to either the primary encoder or
one of the backup encoders as required. Since the DPI data stream is embedded within the
video, the correct DPI commands for the video are always available to whatever device
receives the video. The exact method of embedding DPI commands into the VANC area is
standardized by SMPTE 2010.

86

AS MUX

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

PAMS

V
I
d
e
o

S
w
i
t
c
h

4x

S
D
I

E
m
b
e
d
d
e
r

Figure 12-1 - One-way Protocol Embedded in Video with Integrated Injector

Figure 12-2 shows the Injector as a separate chassis. Each physical box contains one or more
Injector Instances, one for each DPI PID that is to be generated by that injector. The
Automation System maintains one serial channel for each physical device, and can use the
DPI_PID_index field to direct the traffic to the Injector Instance associated to that specific
video stream. This diagram also shows multiple Automation Systems connected to each
injector. The communication link of each Automation System is multiplexed in a single
physical input on the injector. This type of system will require the AS_index field to
distinguish traffic from each AS.

This injector is assumed to output transport packets suitable for multiplexing into a standard
transport stream. This diagram is still in a logical view, since there are many physical
architectures that could work. Examples are separate boxes (as shown), the Injector in the
Multiplexer, or all Encoders, Injectors, and the Multiplexer in one chassis.

87

AS

Injector

Injector

MUX
Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

PAMS

.

.

.

AS

Figure 12-2 - One-way Protocol with Multiple AS to External Injector

12.1.2 Automation System Provisioning Requirements

The following system description gives the essential information required in both the AS and
the Injector to allow an Automation System to communicate with a specific Injector for a
single service. This includes support for multiple Injectors for the purpose of redundancy. It
is expected that all of the information must be provided separately for every service in the
system. In a number of cases, the provisioning of the AS and the Injectors is the same as that
described for the “Two Way Protocol – Automation System to Injector Only” described in
Section 12.2.

88

12.1.2.1 Service Definition and DPI_PID_index

For each physical connection there is a list of one or more MPEG services that may have
a DPI PID stream produced from commands carried on that connection. Each MPEG
Service may have zero to eight DPI PIDs assigned to it. This assumes that a service with
no DPI PIDs does not need to be provisioned to an Injector. The Automation System and
Injector must both have a common agreement on what content is contained on every
service.

The commands used to create a specific DPI message are the same for the one and two
way protocols. If there is more than one DPI PID in the encoder, then a DPI_PID_index
must be provisioned in both the Automation System and the Injector. In order to simplify
the network, the DPI_PID_index should be unique in the entire DCS, if it is used at all.
If there is at most one DPI PID generated per encoder, then it is acceptable to use a value
of zero for all DPI_PID_index’s indicating that this field is not required for proper
operation.

The reasons for using DPI_PID_index, and the methods to provision the value in both
the AS and Injector are the same as in the Two-way protocol and will not be repeated
here. This includes both Component Mode and non-Component Mode support (see
Section 12.2.3).

12.1.2.2 Automation Index (AS_index field)

When more than one Automation System communicates to a single DPI PID on a single
physical connection, each Automation System should be provided with a unique
AS_index value. If there is only one Automation System supplying information for a DPI
component, the AS_index can be set to zero, indicating that this parameter is not required
for proper operation. Since DPI_PID_index is coordinated for the entire DCS, including
multiple Automation Systems, the AS_index is not required as long as there is a one for
one relationship.

If there are redundant Automation Systems and the AS_index field is non-zero, then the
same AS_index should be assigned to both the primary and backup systems. It is the
responsibility of the Automation System’s to coordinate between them which one is
active at any one time. Only one of these redundant Automation Systems should
communicate to the Injector at any one time.

The Injector can use the AS_index to distinguish between messages coming from
different devices, and can provide some self checks to ensure that control for a specific
MPEG service is coming from the expected Automation System. It is also used to ensure
that the different Automation System do not assign duplicate Event Ids, for example. Any
cancel from one Automation System will not cancel commands from the other
Automation System.

89

12.1.2.3 Time

In a one-way system, the link layer may be of a lower bandwidth and would benefit from
more time to process the commands. Using the delayed processing type will help provide
more time for commands. In order to use the timestamp() feature of the messages, the
time in both the Injector and the Automation System need to be coordinated within a few
milliseconds of each other. The exact method of synchronization is a system design issue.
It is expected that the Alive Request message will be used for synchronization.

Other methods may be used if available, such as:
• NTP
• GPS
• SMPTE Timecodes

If the system is designed to work in immediate processing mode, time synchronization is
not necessary.

If the system utilizes a proxy device in a delayed uni-directional mode, upon arrival of the
triggering event, the Proxy Device shall remove the timestamp() structure as presented by
the AS and replace it with a single byte of 0 per Section 11.5.1, change the messageSize
value to reflect that change, and move the remainder of the bytes in the message forward
to fill in as appropriate. The message shall be placed into the VANC space of the next
frame of video for delivery to the Injector.

12.1.2.4 Encryption in the Automation System

Encryption is an optional component in SCTE 35 [1] systems. If used, the encryption
commands are used the same way as described for the two-way system in section 12.2.7.

12.1.2.5 DTMF Descriptors

If the Automation System wishes to control the output of analog cue tones coincident
with the digital cue tones, then it must be provisioned with the DTMF tone sequence and
the pre-roll timing. If used, the DTMF descriptor information is provisioned and used the
same way as described for the two-way system in section 12.2.8.

12.1.3 Automation System Injector Messages

12.1.3.1 Supported Messages

The following table gives the various commands that can be used between the
Automation System and the Injector in a one-way system. Note that the commands are
identical in the AS to Injector direction, and all responses are not used. For more detailed
descriptions, one can refer to the information given for the two-way system.

90

Table 12-1 – Supported Protocol Messages

Command Type Direction Description

splice_request Either AS Injector Sent any time a splice is to be signaled

alive_request Single AS Injector Sent periodically to ensure that the connection is
active to the automation system.

May include the current time so that the AS and
Injector can maintain a synchronized timebase.

time_signal_request Either AS Injector Generates a SCTE 35 [1] Time Signal message.
While either type may be used, time signal will
normally have a descriptor associated with it,
making the multiple command type the normal
type.

splice_null request Single AS Injector Generates a SCTE 35 [1] Null Message.

If the Null Message is used to generate a
heartbeat message, the single command type is
likely to be used.

If the Null Message is used to convey a private
descriptor, the multiple command type must be
used.

proprietary_command
request

Either AS Injector A Generic Basic command. This is used for
future support of standard commands or
proprietary extension. Like other basic
commands, one may attach advanced commands
like the Inject Section.

91

Table 12-2 – Unsupported Protocol Messages

Command Type Direction Description

init_request Single AS Injector Information contained is not useful in a one-way
system. The alive_request serves as the
initialization of a one-way system.

init_response Single AS Injector No return path.

inject_response Single AS Injector No return path.

inject_complete_response Single AS Injector No return path.

alive_response Single AS Injector No return path.

12.1.3.2 Optional Commands

Some features are deemed optional in an Automation system.
• Encryption
• Component Mode
• DTMF descriptors

The following table lists all of the commands associated with these optional features. If
the option is not implemented, the command is not required.

92

Table 12-3 – Optional Protocol Messages

Command Type Direction Description

update_ControlWord request Single AS Injector Database control of control words

delete_ControlWord request Single AS Injector Database control of control words

start_schedule_download
request

Single AS Injector Used to support SCTE 35[1] schedules

schedule_definition request Multiple AS Injector Used to support SCTE 35[1] schedules

schedule_component_mode
request

Multiple AS Injector Used to support SCTE 35[1] schedules

transmit_schedule request Single AS Injector Used to support SCTE 35[1] schedules

12.1.3.3 Unused Commands

PAMS support is an optional part of this specification. In a one-way system, there may be
no TCP/IP connections available, so support of a PAMS is unlikely. If a system was
designed with a connection between a PAMS and an Automation System, these
commands could be used. Refer to Section 12.3 for a detailed look at PAMS support if
required.

93

Table 12-4 – Unused PAMS Protocol Messages

Command Type Direction Description

config_request Single AS PAMS

config_response Single AS PAMS

provisioning_request Single AS PAMS

provisioning_response Single AS PAMS

fault_request Single AS PAMS

fault_response Single AS PAMS

AS_alive_request Single AS PAMS

AS_alive_response Single AS PAMS

94

12.1.4 Flow Diagrams

Figure 12-3 shows a normal communication flow. It assumes that a one-way connection has
been setup and both the Automation System (AS) and Injector have been provisioned
manually.

Initialization
Complete

splice_info_section (OON=1)

Avail Duration
splice_info_section (OON=0)

Serial or
Embedded Video

alive_request + time()

splice_request
(spliceStart_normal)

splice_request
(spliceEnd_normal)

pre-roll time∆τ ⇒

timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

timestamp() time∆τ ⇒

AS Injector TS

Splice Point

Splice Point

Figure 12-3 - One-way Flow Diagram with Delayed Processing

As shown, the alive_request command flows from the Automation System to the Injector at
least once before any normal data flow may commence. This is necessary in order to
synchronize the clocks in the Injector to the reference clock in the automation system. This
alive request is expected to be sent periodically to keep the two clocks in sync over time.
Other than this requirement, the flow diagram looks very much like the flow diagram given
for the two-way systems. The main difference is the lack of any response type commands,
which cannot be generated, since there is no return path in this system.

95

There is no diagram shown for immediate message processing. It is assumed that normal one-
way systems will require the delay in processing. If a system is designed with a sufficiently
high speed data link, then one can use the flow diagram as shown in Figure 12-9 and simply
remove the response type flows.

Figure 12-4 shows how an Automation System can terminate an avail early, by using the
spliceEnd_Immediate command type in the splice_request command. Similar diagrams for
the cancellation type commands could be drawn based on Figure 12-11, Figure 12-12 and
Figure 12-13 in the two-way system description, by removing all response type flows.

Initialization
Complete

splice_info_section (OON=1)

splice_request
(spliceStart_normal)

alive_request + time()

splice_request
(spliceEnd_immediate)

Avail Durationsplice_info_section
(cancel bit set)

pre-roll time∆τ ⇒

timestamp() time∆τ ⇒

AS Injector TS

Splice Point

Early Return
Splice Point

Serial or
Embedded Video

Figure 12-4 - One-way Flow Diagram for Early Return

96

12.2 Two Way Protocol – Automation System to Injector Only

12.2.1 System Architecture Summary

This architecture assumes that an Automation System (AS) only connects with Injectors over
a two-way communication link. Figure 12-5 below shows the Injector as a black box within
the encoder, while Figure 12-6 shows multiple external boxes containing Injector Instances.
The essential thing is that there is a one-for-one relationship with the Injector and the service
carrying the related video and audio content.

This architecture will assume that the PAMS is not directly connected to the Automation
System, so there is no automatic provisioning of the Automation System, nor any automated
redundancy. Redundancy switching works by the Automation System attempting to connect
to backup systems it has been configured for. The PAMS is shown as present because it is
assumed to provide the provisioning and redundancy control for the encoders, multiplexers
and Injectors. But, in this scenario, the Automation System must be able to provide
automation control to a hot standby continuously or discover a failure and switch
automatically to a cold standby.

AS MUX

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

PAMS

Figure 12-5 - Two-way Block Diagram with Internal Injector

97

AS

Injector

Injector

MUX
Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

PAMS

.

.

.

Figure 12-6 - Two-way Block Diagram with External Injector

12.2.2 Automation System Provisioning Requirements

The following system description gives the essential information required in both the AS and
the Injector to allow an Automation System to communicate with a specific Injector for a
single service. This includes support for multiple Injectors for the purpose of redundancy. It
is expected that all of the information must be provided separately for every service in the
system.

98

12.2.2.1 IP Address and Port

The AS must be setup with the IP address and Port Number of each Injector that is
configured for the service. In general, there is expected to be two such Injectors at most,
the primary and the hot backup. There is no reason why a certain network could not
choose to have multiple backups, but this is not generally done.

The AS is expected to output the same command to each IP address and Port configured.
This way, a hot backup is always available to be switched in. The PAMS could switch in
a backup device and expect that no DPI messages would be lost.

In a N:M backup system, where one Injector backs up for multiple primary Injectors, it is
the responsibility of the Injectors to support the messages from (possibly) multiple AS
sources.

12.2.3 Service Definition and DPI_PID_index

12.2.3.1 Non Component Mode Support

For each IP address there is a list of one or more MPEG services that are supplied with
DPI messages. Each MPEG Service may have zero to eight DPI PIDs assigned to it. This
document assumes that a service with no DPI PIDs does not need to be provisioned to an
Injector. The Automation System and Injector must both have a common agreement on
what content is contained on every service. The content determines the schedule of breaks
and the Automation System must be sure that a break it has scheduled aligns to an avail
in the video of that service. A common method of identifying a service would be by the
MPEG program number. There program number is not used by SCTE 35 [1] directly, but
the PMT for that program number will have one or more PIDs defined to carry the SCTE
35 [1] message stream.

Some systems may define multiple PIDs for a single service. In this case, the automation
system must have some method of identifying which PID is carrying specific messages.
Some reasons for carrying multiple PIDs have been identified:

• A method of grouping DPI messages for specific regional groups
• Separate authorization can be applied to different PIDs
• Separate functionality, such as DPI messages and segmentation messages on

different PIDs

In general, the purpose assigned to a specific PID is out of scope for this signaling
standard. It will be a proprietary and manual process to identify the type of DPI
messaging for each PID of each service.

The method used for coordinating the PID assignments is done using the
DPI_PID_index field in the single_operation_message() and

99

multiple_operation_message(). The DPI_PID_index is a unique value in the entire
Digital Compression System (DCS). It is expected that a single value of the
DPI_PID_index will be assigned to each DPI PID in the DCS. The Automation System
would then be provisioned with a list of DPI_PID indexes for every service.

There are some systems which are sufficiently simple that there is no need for a
DPI_PID_index. If there is at most a single DPI PID per Injector Instance, and that
Injector Instance can be uniquely identified, then the DPI PID used to carry DPI messages
is well known (i.e. there is only one choice). In this system, there is no need to provision a
DPI_PID_index and it can be set to a value of zero.

12.2.3.2 Component Mode Support

In a system that supports Component Mode DPI Messages, it is necessary to supply the
Automation System with a more complete service definition. Within an MPEG service,
there are specific components (i.e. PIDs) defined. Each component must have a
component tag assigned to it. The Automation System will require knowledge of the type
of PID (video, audio, data) and the relative pre-roll each component has relative to video.

In the simplest system, component mode is used to simply splice into some PIDs and
allow other PIDs (e.g. Internet traffic) to always flow through to the consumer’s receive
device all of the time. In a more complex system, an Automation System could produce
multiple splice commands such that each component is spliced at a different time. How
the timing for each component is provisioned is out of scope for this document.

12.2.4 Multiple Injector Instance Support

The field DPI_PID_index may also be used to route messages when multiple Injector
Instances are present in a single physical device, as is shown in Figure 12-6. If there is a
single Injector per device (such as in Figure 12-5) or it can be resolved to a single Injector
Instance (using a socket for example) then this field may not be required and can be
assigned a value of zero. Please consult Section 7.2.1 for specifics.

There are at least two ways that this standard supports multiple Injectors. The exact
implementation can be chosen as best fits a specific implementation.

12.2.4.1 IP Port Segmentation

In a TCP/IP type configuration, each Injector Instance can be assign a unique port
number, or in an extreme case, a unique IP address and port number. In this architecture,
each Injector Instance can be treated as a physical Injector, even though they are in the
same chassis.

This type of configuration may use too many resources. Each socket connection
consumes memory and processing power. Some implementations may limit the total
number of sockets, which would make this method of communication to have a limited
usefulness.

100

The DPI_PID_index can provide a limited socket-like functionality if multiple IP
Sockets are not available.

12.2.4.2 DPI PID Index Segmentation

DPI_PID_index is a field, as described above, which provides a unique identification for
a single DPI PID within the Digital Compression System (DCS). A device with multiple
injectors could use DPI_PID_index to route messages to a specific Injector Instance. For
this to work, an Injector would need to maintain a complete list of DPI_PID indexes
being serviced by each Injector Instance. When a message arrives with a non-zero
DPI_PID_index set, the main controller can forward the message to the Injector Instance
configured to handle it.

12.2.5 Automation Index (AS_index field)

When more than one Automation System communicates to a single DPI PID on a single
physical connection, each Automation System should be provided with a unique
AS_index value. If there is only one Automation System supplying information for a DPI
component, the AS_index can be set to zero, indicating that this parameter is not required
for proper operation.

In a two-way system, an individual socket connection can be established for each
automation system. Even if there are multiple Automation Systems communicating to a
single Injector, the communications path is one to one. Therefore, one would not expect
to use the AS_index in any system (broadcast or bi-directional) that uses the IP protocol,
and AS_index may be set to zero.

12.2.6 Time

If Automation System messages are delayed processed, using the timestamp() feature of
the messages, then the time in both the Injector and the Automation System need to be
coordinated within a few milliseconds of each other. The exact method of
synchronization is a system design issue. Some extra options are available to a system
designer when a TCP/IP connection is available. Some examples for time synchronization
are given below.

• NTP/SNTP
• GPS
• SMPTE Time Codes
• The Alive Request Message

If the system is designed to work in immediate processing mode, time synchronization is
not necessary.

101

12.2.7 Encryption in the Automation System

Encryption is an optional component in SCTE 35 [1] systems. If the system is not using
Encryption, then information in this section may be ignored.

There are three methods of supporting the encryption of SCTE 35 [1] messages.

1. The Automation System controls the encryption because there are requirements
for targeting, event related changes, or full control of an external CA system.

2. The Injector (i.e. PAMS controlled) locally encrypts messages based upon a
fixed definition of the Control Word and Algorithm for every message in a
service.

3. Shared encryption control where the AS and Injector agree that a specific CW
Index applies to a specific group of receivers. The Injector is provided the
control words locally and the AS only needs to direct any one DPI message to
use the CW. The rules for defining what a CW means needs to be worked out
for the system, so that the AS and Injector have a common understanding of
the groups.

There are three commands used to support encryption.
• Encrypt DPI Data
• Update Control Word
• Delete Control Word

In complex systems (Method 1), the encryption parameters could change on an event
basis. Encryption could also be used as a form of targeting messages, so multiple
messages could be generated per event, each with different encryption parameters. A
different CW_Index may be applied per message to determine how the message is
encrypted.

A device upstream of the Injector should control access and/or targeting of DPI messages
and would need to be provisioned to do so. It may not be an Automation System per se,
but would it would use this protocol and would appear to the Injector as an Automation
System.

NOTE: The database of control words is unique to an Injector Instance. Due to the
potentially large size of the database, an Injector may choose to limit the maximum
number of control words that are stored simultaneously.

In summary:

If the AS implements the complete conditional access system (Method 1) it would use all
of the encryption commands. If the AS implemented no conditional access (Method 2)
then the AS should never send any of the commands. If the AS has only control of which

102

messages are encrypted (Method 3), then only the “Encrypt DPI Data” command is ever
sent by the AS.

Access security is a concern. The environment between the AS and the Injector should
have physical security at a minimum.

12.2.8 DTMF Descriptors

If the Automation System wishes to control the output of analog cue tones coincident
with the digital cue tones, then it must be provisioned with the DTMF tone sequence and
the pre-roll timing.

In advanced applications, it is possible that each tone sequence is unique. An example
might be a limited form of targeting using different digits sequences. The Automation
System needs to be the source of the DTMF information in order to provide such control.

In simple systems that have a fixed relationship of the DTMF Tone Sequence and timing,
the Injector could be directly provisioned with this information and there would be no
need for automation support.

12.2.9 Automation System Injector Messages

12.2.9.1 Supported Messages

The following table gives the various commands that can be used between the
Automation System and the Injector.

103

Table 12-5 – Supported Protocol Messages

Command Type Direction Description

init_request Single AS Injector Sent immediately after a socket connection has
been established

init_response Single AS Injector Acknowledgement for Init Request

splice_request Either AS Injector Sent any time a splice is to be signaled

inject_response Single AS Injector Acknowledgement for splice request – returned
to immediately acknowledge receipt of the
command

inject_complete_response Single AS Injector Acknowledgement for splice request – returned
after the DPI message has been injected into the
transport.

May be returned immediately after the inject
Response if immediate mode timing is used.

May be delayed if time stamped processing is
used.

alive_request Single AS Injector Sent periodically to keep the connection active.

May include the current time so that the AS and
Injector can maintain a synchronized timebase.

alive_response Single AS Injector Acknowledgement for the Alive Request

104

time_signal_request Either AS Injector Generates a SCTE 35 [1] Time Signal message.
While either type may be used, time signal will
normally have a descriptor associated with it,
making the multiple command type the normal
type.

inject_response Single AS Injector Acknowledgement for Time Signal – returned to
immediately acknowledge receipt of the
command

inject_complete_response Single AS Injector Acknowledgement for Time Signal – returned
after the DPI message has been injected into the
transport.

May be returned immediately after the Splice
Response if immediate mode timing is used.

May be delayed if time stamped processing is
used.

105

Table 12-6 – Supported Protocol Messages (Con’t)

Command Type Direction Description

splice_null request Single AS Injector Generates a SCTE 35 [1] Null Message.

inject_response Single AS Injector Acknowledgement for Splice Null – returned to
immediately acknowledge receipt of the
command

inject_complete_response Single AS Injector Acknowledgement for Splice Null – returned
after the DPI message has been injected into the
transport.

May be returned immediately after the Splice
Response if immediate mode timing is used.

May be delayed if time stamped processing is
used.

106

proprietary_command
request

Either AS Injector A generic Normal command. This is used for
future support of standard commands or
proprietary extension. Like other basic
commands, one may attach advanced commands
like the Inject Section.

inject_response Single AS Injector Acknowledgement for Proprietary Command –
returned to immediately acknowledge receipt of
the command

inject_complete_response Single AS Injector Acknowledgement for Proprietary Command –
returned after the DPI message has been injected
into the transport.

May be returned immediately after the Splice
Response if immediate mode timing is used.

May be delayed if time stamped processing is
used.

12.2.9.2 Optional Commands

Some features are deemed optional in an Automation system.
• Encryption
• Component Mode
• DTMF descriptors

The following table lists all of the commands associated with these optional features. If
the option is not implemented, the command is not required.

107

Table 12-7 – Optional Protocol Messages

Command Type Direction Description

update_ControlWord request Single AS Injector This allows the AS to download a new
CW for use in encrypted messages.

 general_response Single AS Injector

delete_Control_Word request Single AS Injector This allows the AS to delete an active
CW. Once deleted, an Injector can flag an
error if any attempt is made to use it.

 general_response Single AS Injector

start_schedule_download
request

Single AS Injector Indicates to an Injector that it should start
collecting schedule information.

inject_response Single AS Injector

schedule_definition request Multiple AS Injector Used to download a single schedule entry
into the Injectors database.

inject_response Single AS Injector

schedule_component_mode
request

Multiple AS Injector Used as a supplemental command for
Schedule Definition to indicate that a
component splice is being scheduled.

inject_response Single AS Injector

transmit_schedule request Single AS Injector The Automation System uses this
command to tell an Injector to send the
accumulated schedule information.

inject_response Single AS Injector

 inject_complete_response AS Injector Indicates the schedule data has been
placed in the outgoing TS.

108

12.2.9.3 Unused Commands

With no PAMS supported, the PAMS related command are not used.

Table 12-8 – Unused PAMS Protocol Messages

Command Type Direction Description

config_request Single AS PAMS

config_response Single AS PAMS

provisioning_request Single AS PAMS

provisioning_response Single AS PAMS

fault_request Single AS PAMS

fault_response Single AS PAMS

AS_alive_request Single AS PAMS

AS_alive_response Single AS PAMS

109

12.2.10Flow Diagrams

Figure 12-7 shows how the initialization of a TCP/IP two-way connection is setup. The client
(Automation System) must first establish a socket to the server (Injector). The init_request()
message is sent to establish the socket connection. In a system that is using keep_alive()
messages for time synchronization, the keep_alive() message must also be sent to
synchronize time before any normal message traffic that uses delay processing is sent.

TCP/IP

AS
(Client)

Injector
(Server)

TS

splice_init_response
splice_init_request

Open a Socket

alive_response
alive_request

Normal AS, Injector and TS Traffic

Normal AS, Injector and TS Traffic

Initialization
Complete

Repeat as
required

alive_response
alive_request

Required if time() needs
synchronization

Figure 12-7 - Two-way Flow Diagram for Initialization

Figure 12-8 shows a normal communication flow. It assumes that a TCP/IP connection has
been setup and both the Automation System (AS) and Injector have been provisioned
manually. This diagram shows the system without any PAMS support for automatic
provisioning of the Automation System. For normal communications, a single message will

110

produce a single MPEG section. For example, a splice request with a command type
“spliceStart_normal” will produce a splice_info_section containing a splice_insert command
with out_of_network (OON) set to a one. When an immediately processed command is sent
that produces an MPEG section, there are two responses returned at the same time. They both
may be returned in the same datagram if desired.

Initialization
Complete

splice_request
(spliceEnd_normal)

splice_response

splice_info_section (OON=0)
splice_complete_response

TCP/IP

Avail Duration∆τ ⇒timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

AS Injector TS

splice_info_section (OON=1)splice_complete_response

splice_response

splice_request
(spliceStart_normal)

timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

Splice Point

Splice Point

Figure 12-8 - Two-way Flow Diagram with Delayed Processing

The diagram shows the splice_request for both a normal message that directs a splice to exit
the network feed and the command to return to the network feed at the end of the avail. The
splice_request contains a command_type field that gives the type of command, as defined in
Table 8-6. Figure 12-8 shows a system that uses delayed processing for both start and the end
of the avail period. Figure 12-9 shows the same normal system flow diagram, but it uses the

111

“process immediately” mode. These commands are identified by having a time_type value of
zero in the Timestamp() field. This system assumes that the TCP/IP connection has relatively
low latency and that the injector can output a splice_info_section in the same video frame as
the command arrives.

Initialization
Complete

splice_request
(spliceEnd_normal)

splice_info_section (OON=1)

splice_info_section (OON=0)

TCP/IP

Avail Duration∆τ ⇒

pre-roll time∆τ ⇒

pre-roll time∆τ ⇒

AS Injector TS

splice_complete_response
splice_response

splice_request
(spliceStart_normal)

splice_complete_response
splice_response

Splice Point

Splice Point

Figure 12-9 - Two-way Flow Diagram with Immediate Processing

These diagrams do not show the initialization sequence for the TCP/IP connection. Nor
does it show the alive request and response which are exchanged periodically.

112

Figure 12-10 shows a case of abnormal termination of an avail. It starts with a normal
sequence (normal splice: out_of_network = 1) for the start of the avail using the delayed
method of processing. If a network operator has detected some abnormal programming
requirements, they can initiate an emergency return to network. This uses a splice_request
with a splice_return_early command type. Due to the emergency nature of this command, one
would expect it to be sent with a zero for the time_type field which forces an immediate
processing of the early return. The receive device, when it detects a splice_info_section with
the immediate bit set in a return to network message (return: out_of_network = 0), it will
abort any inserted content it is playing and return to the network immediately.

Initialization
Complete

splice_response

timestamp() time

splice_info_section (OON=1)

Avail Durationsplice_info_section (OON=0)
(Immediate bit set)

pre-roll time

splice_complete_response

splice_response

splice_request
(spliceStart_normal)

∆τ ⇒

∆τ ⇒

TCP/IP

splice_request
(spliceEnd_immediate)

AS Injector TS

∆τ ⇒

Splice Point

Early Return
Splice Pointsplice_complete_response

Figure 12-10 – Two-way Flow Diagram for Early Return

113

In some special circumstances, when a long timestamp() is used for delayed processing, or
there is a long pre-roll, an operator may decide that a splice in progress needs to be canceled.
When the Automation System wishes to a cancel a command soon after it is sent, it may not
know if it has been processed or if a section has been sent in the output transport. In this case,
it sends a splice cancel as shown in Figure 12-11, Figure 12-12 or Figure 12-13. If the
Automation System is sure that an insertion is in progress, they should send the
spliceEnd_Immediate instead of the cancel command.

Figure 12-11 shows a cancel that is sent before the splice_info_section is generated. In this
case, the section generation is canceled. Also, the inject_complete_response for the original
message will not be returned.

Initialization
Complete

splice_complete_response

splice_response

splice_request
(spliceStart_normal)

TCP/IP

splice_request
(splice_cancel)
splice_response

splice_complete_response

splice_info_section (OON=1) Normal traffic is
never sent due
to cancellation

timestamp() time∆τ ⇒

AS Injector TS

Figure 12-11 - Two-way Cancellation before being Processed

114

Figure 12-12 shows a cancel command being sent after a splice_info_section has been placed
in the output multiplex. In this case, the Injector must create a splice_info_section formatted
with the cancel bit set.

Initialization
Complete

splice_info_section (OON=1)

Splice Point
Canceled

splice_complete_response

splice_response

splice_request
(spliceStart_normal)

TCP/IP

splice_response

splice_request
(splice_cancel)

splice_complete_response

timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

AS Injector TS

splice_info_section
(cancel bit set)

Figure 12-12 - Two-way Cancellation after being Processed

Figure 12-13 shows a cancel command being sent after a splice_info_section has been placed
in the output multiplex and after the splice time indicated has passed. In this case, the Injector
must create a splice_info_section formatted as a spliceEnd_immediate type command to
abort the insertion that is in progress.

115

Initialization
Complete

splice_info_section (OON=1)

Splice Point

splice_complete_response

splice_response

splice_request
(spliceStart_normal)

TCP/IP

splice_response

splice_request
(splice_cancel)

splice_complete_response

timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

AS Injector TS

splice_info_section
(OON=0 Immediate)

Early Return
Splice Point

Figure 12-13 - Two-way Flow Diagram Cancel after Splice Point

116

12.3 Two Way Protocol – Automation System to Injector with PAMS

12.3.1 System Architecture Summary

This architecture assumes that an Automation System (AS) connects with Injectors over a
two-way communication link. The Automation System also connects with a Provisioning and
Alarm Management System (PAMS) to be automatically provisioned with information about
the services available in the network. The PAMS can also provide support for controlled
redundancy of Injectors and indicate to an Automation System how to reconfigure to
maintain service. Figure 12-14 below shows the Injector as a black box within the encoder,
while Figure 12-15 shows multiple external boxes containing Injector Instances. The
essential thing is that there is a one-for-one relationship with the Injector and the service
carrying the related video and audio content.

A failure of an injector in this system can be detected by either an AS or the PAMS. If the AS
detects a failure it can notify the PAMS of this fact. If the PAMS detects a failure it can take
corrective action immediately. In both cases, the PAMS is responsible for reprovisioning the
Injectors and informing the AS of the new configuration. The AS can then attempt to
reconnect to the replacement Injector.

117

AS MUX

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

PAMS

Figure 12-14 - Two-way Block Diagram with Internal Injector

118

AS

Injector

Injector

MUX
Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

PAMS

.

.

.

Figure 12-15 - Two-way Block Diagram with External Injector

12.3.2 Automation System Provisioning Requirements

The following system description gives the essential information required in the AS to allow
an Automation System to communicate with a specific Injector for a single service. This
includes support for multiple Injectors for the purpose of redundancy. It is expected that all of
the information must be provided separately for every service in the system. The PAMS is
expected to provide the detailed information on services and Injector communications to the
Automation System.

12.3.2.1 IP Address and Port for PAMS

The Automation System will require the IP Address and Port for each PAMS in the
system. A normal system is expected to have a single active PAMS controlling a set of

119

Encoders and matching Injectors. Some systems may have a redundant PAMS available.
In this case, the AS may wish to establish initial communications with the backup PAMS,
but normal operation communications is with the currently active PAMS.

The PAMS will supply the IP Address and Port information for all Injectors after the
initial connection has been established.

12.3.2.2 Service Name

The AS and Injectors must agree on what DPI data is associated with what content and
for which services that the content is being carried on. The only field available to
synchronize the three devices (AS, PAMS and Injector) is through the use of the text
string service_name.

The automation system must be manually provisioned with a text service name that
associates a list of splice times for the content it is controlling. The PAMS is also
manually provisioned with a service_name for each program number it is controlling. For
each service, the PAMS supplies a list of DPI_PID_index, one for each DPI PID in the
service. The PAMS may optionally supply a list of components contained in the service,
by supplying the component_tags for each elementary stream PID.

One should note that it is possible to associate a video and audio with more than one
service in some systems. It is also possible, by extension, to associate the same
DPI_PID_index to multiple services. In a complete service definition, duplicate
DPI_PID Indexes may be present. If this is found, one must assume that it is also the
exact same physical DPI PID Stream and the AS need only send the AS to Injector
commands to each physical device once.

It is also possible that the same DPI_PID_index value is found associated with multiple
IP Address and Ports. The physical DPI PID stream is identical. In this case, the PAMS is
indicating to the Automation System that there are multiple “Hot Backup” Injectors
active. The AS cannot know which of these many devices is the active device, and must
direct AS to Injector commands to all physical devices.

Note that in some systems, the DPI_PID_index is not required, and that DPI_PID_index
will be set to zero in this special case. Therefore, the uniqueness requirement described
above only applies when DPI_PID_index is non-zero. The service name must always be
a unique text string. The text string is case sensitive.

120

12.3.2.3 Time

If Automation System messages are delayed processed in the Injector by using the
timestamp() feature of the messages, then the time in both the Injector and the
Automation System need to be coordinated within a few milliseconds of each other. The
time can be synchronized using any of the methods described in Section 12.2.6.

12.3.2.4 Encryption in the Automation System

Encryption is an optional component in SCTE 35 [1] systems. If the system is not using
Encryption, then information in this section may be ignored. The PAMS has no direct
control over how Encryption should be used. Therefore, Encryption must be manually
provisioned the same as is described in Section 12.2.7.

12.3.2.5 DTMF Descriptors

If the Automation System wishes to control the output of analog cue tones coincident
with the digital cue tones, then it must be provisioned with the DTMF tone sequence and
the pre-roll timing. The PAMS has no direct control over how DTMF tones are used by
the Automation System. Therefore, they will need to be manually provisioned the same as
is described in Section 12.2.8.

12.3.3 PAMS Supplied Information

12.3.3.1 Injector Configuration

The PAMS is the device that is aware of the network interconnections, such as which
Injector Instance is associated with each physical device. Using this configuration
information, the PAMS can supply the Automation System with the exact IP Address and
Port for each service in the system.

12.3.3.2 Multiple Injector Instance Support

Multiple physical injectors may require more than simply the IP Address of the device to
enable the correct routing of the AS to Injector traffic. In this case, it is the PAMS that
determines if the Injector Instance can be identified by IP address, DPI_PID_index or a
combination of both fields.

12.3.3.3 Service Information

The PAMS must be aware of the exact configuration of each MPEG service in the
system. If component mode is being used, it must also be aware of all of the components
present and the associated component_tags. This information must be supplied to the

121

Automation System so that it can direct the DPI Commands to the correct Injector
Instance.

12.3.3.4 Automation Index (AS_index field)

When more than one Automation System communicates to a single DPI PID on a single
hardwired connection (such as serial or USB communications), each Automation System
should be provided with a unique AS_index value. The PAMS can determine if an
AS_index is required and can inform the AS of the value of AS_index that it should use
when communicating to the injector. A value of zero can be used if AS_index is not
required for proper operation, for example when TCP/IP is used. In TCP/IP systems, each
connection can have a unique instance of the socket to determine which Automation
System is supplying the command.

12.3.4 Automation System Injector Messages

12.3.4.1 Supported Messages

The messages exchanged between the Automation System and the Injector are the same
as those used for the two-way system without PAMS support. Refer to Table 12-5 and
Table 12-6 for a summary of the available commands.

12.3.4.2 Optional Commands

Some features are deemed optional in an Automation system.
• Encryption
• Component Mode
• DTMF descriptors

The optional messages exchanged between the Automation System and the Injector are
the same as those used for the two-way system without PAMS support. Refer to Table
12-7 for a summary of the available commands.

12.3.5 Automation System PAMS Messages

With PAMS support, the PAMS related commands are used as described in Section 9.0. The
commands available are summarized in Table 12-9.

122

Table 12-9 –PAMS Protocol Messages

Command Type Direction Description

config_request Single AS PAMS Used on initial connection of the
Automation System to a PAMS

config_response Single AS PAMS Acknowledges the confiq_request

provisioning_request Single AS PAMS This is sent on the reset of a PAMS, after a
config_request, whenever there is a change
in the service definitions, or a change in
what service each Injector has assigned to
it.

provisioning_response Single AS PAMS Acknowledges the provisioning_request

fault_request Single AS PAMS This command is sent by the AS whenever
it detects a failure of an Injector. The
PAMS should reconfigure the Injectors and
return a provisioning_request when the
backup Injector has been configured.

fault Response Single AS PAMS Acknowledges the fault_request

AS_alive_request Single AS PAMS Sent periodically by the PAMS when a
permanent connection has been established.

AS_alive_response Single AS PAMS Acknowledges the AS_alive_request

12.3.6 Flow Diagrams AS Injector

The flow diagrams between and Automation System and the Injector are the same as for the
non-PAMS system described in Section 12.2.10.

12.3.7 Flow Diagrams AS PAMS

Figure 12-16 shows how the initialization of a TCP/IP two-way connection is setup. The
client (Automation System) must first establish a socket to the server (PAMS). The, the
config_request() message is sent to establish the socket connection.

123

Open a Socket

Close the Socket

Open a Socket

Close the Socket

TCP/IP

AS
(Client)

PAMS
(Server)

config_response
config_request

Initialization
Complete

provisioning_response
provisioning_request

Figure 12-16 – AS/PAMS Flow Diagram for Initialization

In a system that is using a permanent connection, the AS_keep_alive() message should also
be sent. The connection to the PAMS is not closed. This is shown in Figure 12-17.

124

Open a Socket

Close the Socket

Open a Socket

TCP/IP

AS
(Client)

PAMS
(Server)

config_response
config_request

Initialization
Complete

provisioning_response
provisioning_request

AS_alive_response
AS_alive_request

Periodic
Communication

Figure 12-17 - PAMS Two-way Initialization of a Permanent Connection

Figure 12-18 and Figure 12-19 show two ways that a failure may be detected as the system
reconfigured in response.

Figure 12-184 shows the PAMS detecting a failure that may not be apparent to an
Automation System. The PAMS will send a new configuration to the Automation System by
sending an updated provisioning_request.

4 The OPEN and CLOSE socket actions shown in the figure are not required if the PAMS opens a permanent
connection.

125

Open a Socket

Close the Socket

TCP/IP

AS PAMS

provisioning_response
provisioning_request

Figure 12-18 - PAMS detects an Injector Failure

Figure 12-195 shows the Automation System detecting a failure that may not be detected by a
PAMS (for example a cable being disconnected). The AS may then request that a new
injector be assigned to replace the failed unit. Ultimately, it is the PAMS that determines if
there is a replacement device available and will send a provisioning_request when the
replacement Injector has been fully provisioned.

5 The OPEN and CLOSE socket actions shown in the figure are not required if the PAMS opens a permanent
connection.

126

Open a Socket

Close the Socket

Open a Socket

Close the Socket

TCP/IP

AS PAMS

fault_response
fault_request

provisioning_response
provisioning_request

Figure 12-19 - AS detects an Injector Failure

When the PAMS adds or removes a service from an Injector, it uses the provisioning_request
to change the service definition in the Automation System. Similarly, if an Injector is taken
offline or replaced by a new physical device, the provisioning_request is used to tell the
Automation System of the new configuration. In both cases, the diagram is essentially the
same as that used for changes that result from a device failure, as shown in Figure 12-18.

Figure 12-20 shows what happens when the Automation System detects a failure with
Injector communications, but the PAMS has not detected a failure. The AS is expected to
retry to establish a connection with the Injector periodically until either it works or the PAMS
re-provisions the system. The example shown has the PAMS ignoring the fault_request sent
by the AS. It is assumed that either the AS, the PAMS, or both report the fault to the operator
for corrective action. If the AS retries and fails again, it should send another fault_request to
the PAMS. The PAMS can re-provision the system if enough failures occur to the same
device.

127

Socket Failed

AS tries to open a Socket

Open a Socket

Close the Socket

TCP/IP

AS PAMS

fault_response
fault_request

Injector

TCP/IP

PAMS determines
No Fault Found

splice_init_response
splice_init_request AS Retry Timeout

Reconnect worked

Figure 12-20 - Injector Socket Failed and Recovered

128

13.0 RESULT CODES (NORMATIVE)

Table 13-1 - Result Codes

Result Result Name Description Response Message

100 Successful Response This result code shall be sent to
indicate that everything is fine, no
problems, request handled completely.

All

101 Access Denied-Injector not
authorized for DPI service

This result code shall be sent to
indicate that the injector is not
provisioned, does not support DPI, or
that there are possible license
problem (user defined)

init_response

102 CW index does not have Code
Word

This result code shall be sent to
indicate that Request points to a CW
index without a Code Word

general_response or inject_response

103 DPI has been de-provisioned This result code may be sent to
indicate that the Injector has been de-
provisioned from DPI service.

alive_response

104 DPI not supported This result code may be sent to
indicate that Injector does not support
DPI functionality

init_response

105 Duplicate service name This result code may be sent to
indicate that the AS has found an
invalid duplicate service name.

provisioning_response

106 Duplicate service name is OK This result code may be sent to
indicate that the AS has found a valid
duplicate service name.

provisioning_response

107 Encryption not supported This result code shall be sent to
indicate that Injector does not support
SCTE 35 [1] message encryption

inject_response

108 Illegal shared value of DPI PID
index found

This result code may be sent to
indicate that AS does not understand
the DPI PID values as properly shared
Both PAMS and the AS should
produce alarms as a result.

provisioning_response

109 Inconsistent value of DPI PID
index found

This result code may be sent to
indicate that Duplicate value assigned
to two or more DPI_PID_index’s
without shared_PID being non-zero.
Both PAMS and the AS should
produce alarms as a result.

provisioning_response

129

110 Injector is already in use This result code shall be sent to
indicate that another AS is already
connected to this Injector.

init_response

111 Injector is not provisioned to
service this AS

This result code may be sent to
indicate that the Injector has not been
provisioned to service this particular
AS.

init_response

112 Injector Not Provisioned For DPI This result code shall be sent to
indicate that Injector at this IP address
has not been provisioned for DPI
operation (yet). Try again later.

init_response

113 Injector will be replaced This result code may be sent to
indicate that PAMS will replace the
Injector in the near future.

failure_response

114 Invalid Message Size This result code shall be sent to
indicate that The message was not the
correct length as determined by this
specification

ALL

115 Invalid Message Syntax This result code shall be sent to
indicate that Fields defined by this
specification are not within the valid
range

ALL

116 Invalid Version This result code shall be sent to
indicate that Automation System and
Injector are using totally incompatible
versions of this API. The DPI system
should produce a major alarm.

init_response

117 No fault found This result code may be sent to
indicate that the PAMS cannot find a
communications fault and will most
likely not change Injectors.

failure_response

118 Service name is missing This result code may be sent to
indicate that the service name is
missing.

provisioning_response

119 Shared value of DPI PID index
not found

This result code may be sent to
indicate that AS knows of a common
DPI PID between multiple programs.
Not found in provisioning_request
message data. Both PAMS and the
AS should produce alarms as a result.

provisioning_response

120 Splice Request Failed – Unknown
Failure

This result code shall be sent to
indicate that The Injector failed to
insert Cue message

inject_complete response

121 Splice Request Is Rejected Bad This result code shall be sent to inject_response

130

Result Result Name Description Response Message
splice_request parameter indicate that

122 Splice Request Was Too Late –
pre-roll is too small

This result code shall be sent to
indicate that A pre-roll parameter of a
Splice request is too small (should be
greater than 4 seconds)

inject_response

123 Time type unsupported This result code shall be sent to
indicate that a value for time_type in
the timestamp() is unsupported.

inject_response

124 Unknown Failure This result code shall be sent to
indicate that the Injector has
experienced a possible software failure
or an attempt has been made to use
un-implemented functionality.

All

125 Unknown opID This result code shall be sent to
indicate that an unknown opID is
present in data(). Use the
result_extension field to indicate
which opID is at fault.

ALL

126 Unknown value for
DPI_PID_index

This result code shall be sent to
indicate that the Injector does not
know of this value.

ALL

127 Version Mismatch The message contains a protocol
version number not yet supported by
the Injector. Message features may
not be fully implemented.

ALL

128 Proxy Response This result code shall be sent to
indicate that everything is fine, no
problems, request handled completely
by a Proxy Device.

init_response

131

APPENDIX A: TCP/IP CONVEYANCE

These follow the paradigm of SCTE 30’s [2] communications between a Splicer and a Server. In
this particular case (see Figure 5-1) the communications are primarily point-to-point messages
between an Automation System and an Injector. There are also ancillary (but important)
communications between the Digital Compression system’s Provisioning and Alarm
Management System (PAMS) and the Automation System.

A number of necessary parameters, such as the assignment of IP addresses, are defined in a
manner that is outside the scope of this Specification.

The communication between the Automation System and the Injector is conducted over one
TCP/IP socket connection per Output Channel (Injector). Once this API Connection is
established it remains established until one of the devices terminates the API Connection at
which time re-initialization is needed to splice again. No multicasting or other broadcast
communications mechanisms are to be utilized for messaged defined by this Standard.

All messages exchanged between the Automation System and the Injector share a common
general format detailed in the Message Format Section (see Section 7.0). The format divides
messages into two classes, “single_operation” and “multiple_operation.” Most traffic is
expected to be of the “single_operation” class. The “multiple_operation” class will permit full
support of all SCTE 35 [1] functions and does allow for a category of messages of the “User
Defined” type. These can also be used as a mechanism for private data messages between the
Automation System and the Splicer that are beyond the scope of this document.

All request messages require a response from the recipient. Most of the response messages only
indicate a result and do not contain any other data. They are needed to ensure the requestor that
the message was received and interpreted correctly. If there are errors, the message can be resent.

“Heartbeat” messages (alive request/alive response) are also provided to ensure both systems that
their partner remains connected, even though no splicing related traffic has been sent for a
considerable time. Readers should keep in mind that in many distribution systems there may be
as few as a single “avail” an hour.

APPENDIX B: ANSI/TIA/EIA-232-F CONVEYANCE

Data communications for a “classic” automation system utilized point-to-point EIA-422 or EIA-
232 communications which required extra characters to provide message synchronization.

Messages in this API which are carried either by TIA/EIA-232-F or TIA/EIA-422-B shall utilize
the Basic Link Layer Syntax, as defined in Appendix B.1. The data is carried in a binary form on
TIA/EIA-232-F or TIA/EIA-422-B. The link layer is used to convey the information from source
to destination reliably.

132

Messages in this API which are carried in video (analog or digital) shall also utilize the Basic
Link Layer Syntax, as defined in Appendix B.1 The implementation specifics are left to the
system manufacturer.

B.1 The Basic Link Layer Syntax

Table B-1 - serial_linklayer Structure

Syntax Bytes Type
serial_linklayer(){
 start_delimiter 1 uimsbf
 message() *
 message_CRC 4 uimsbf
 end_delimiter 1 uimsbf
}

B.1.1 Semantics of fields in serial_linklayer()

start_delimiter – This is used to unique identify the start of a message. It shall be the value
0x02 (ASCII STX). This code shall not exist within the body of the message unless
proceeded by an ESC character (see Section B.2 below).

message() – This field carries the message as defined in Section 7.2.2 or 7.2.3. The message
contents will be modified to include Escape Codes (ESC) to ensure the uniqueness of the
start and end delimiters (see Section B.2 below).

message_CRC – This field carries the MPEG standard 32-bit CRC calculated on the
original message bytes. One must ensure that the escape encoding is applied to the CRC after
its calculation but before the final transmission of the message.

end_delimiter – This is used to unique identify the end of a message. It shall be the value
0x03 (ASCII ETX) This code shall not exist within the body of the message unless
proceeded by an ESC character (see Section B.2 below).

B.1.2 Detailed Discussion of Message Syntax and Semantics

As detailed below, the message contents must be scanned for occurrences of ESC, STX, or
ETX characters, and if such are found, they are replaced by the Escape Sequence detailed
below.

The escape sequence is used to ensure unique start and end delimiters. Making the start and
end unique, the system can reliably synchronize on the start of a message as well as reliably
locate the CRC and the completion of the message.

133

B.2 The Escape Sequence

The basic escape code shall be the ASCII Escape character ‘ESC’ (0x1B).

In the “message” and the CRC, all instances of the reserved binary values (STX, ETX, and ESC)
will be replaced by the Escape Sequence (<ESC, STX>, <ESC, ETX> and <ESC, ESC>
respectively).

On the transmitter, the escape codes are added immediately before the start and end delimiters
are added, but after the CRC is calculated and added to the message.

The general rule on the receiver is that any instance of the ESC character is removed on reception
and the character immediately following is retained but is not used in checking for
synchronization. The CRC is checked after the ESC characters have been removed and the
original message has been recreated.

APPENDIX C: DIGITAL VIDEO SYSTEM CONVEYANCE (INFORMATIVE)

For certain specific system architectures, the ability to imbed the requests in the vertical ancillary
data areas (VANC) of a serial digital video signal is required.. SMPTE has standardized the
conveyance of the messages defined in this Standard in SMPTE 2010 [10].

This method is supported by this Standard with some important limitations. The receiving
Injector must process the message and not replicate a digitized copy of the line(s) that carried it.
If vertical interval is being carried in the compressed stream, the line(s) must be replaced by
black or not coded in the MPEG domain. Messages in VANC should be removed.

APPENDIX D: ANALOG VIDEO SYSTEM CONVEYANCE

For certain specific system architectures, the ability to imbed the requests in the vertical blanking
interval of an analog video signal is required. This method is supported by this Standard with
some important limitations.

The receiving Injector must process the message and not replicate a digitized copy of the line(s)
that carried it. If vertical interval is being carried in the compressed stream, the line(s) must be
replaced by black or not coded in the MPEG domain.

For analog signals, the transmission system signal-to-noise ratio must be sufficient to permit the
CRC or Hamming-code recovery of corrupted characters in the message. Transmission of the
message multiple times will help with this, but the users must take care to ensure high quality
transmission links.

134

The data may need to be coded using the Escape Sequence defined in Appendix B.2 to ensure
proper parsing upon receipt.

It is the implementer’s responsibility to ensure these details, along with many others not in the
scope of this document, are defined before a compliant system can be constructed.

	Automation System – Compression System Communications API
	1.0 Scope
	2.0 DEFINITIONS and Acronyms
	Basic
	backoff
	BER
	bslbf
	MSB
	NABTS
	Normal
	Response
	DESCRIPTION
	Supplemental
	DESCRIPTION

	3.0 Normative references
	3.1 SCTE References
	3.2 Standards from other Organizations

	4.0 Informative References
	4.1 SCTE References
	4.2 Standards from other Organizations
	4.3 Published Materials

	5.0 Overview
	6.0 Data Communications
	6.1 Concerning Data Communications (Informative)
	6.2 Data Communications Requirements for this API (Normative)
	6.3 Conveyance Quality-of-Service Considerations (Informative)
	6.4 Uni-directional System Considerations (Informative)
	6.5 Proxy Devices (Normative)

	7.0 Message Formats
	7.1 Terminology (Informative)
	7.2 Message Structures (Normative)
	7.2.1 Addressing of Particular Items within a System
	7.2.1.1 AS_index
	7.2.1.2 DPI_PID_index

	7.2.2 Single Operation Message
	7.2.2.1 Semantics of fields in single_operation_message()

	7.2.3 Multiple Operation Message
	7.2.3.1 Order of Request Execution
	7.2.3.2 Format of the multiple_operation_message() structure
	7.2.3.3 Semantics of fields in multiple_operation_message()
	7.2.3.4 Detailed Discussion of Message Syntax and Semantics

	7.3 Operation Types (Normative)
	7.3.1 Meaning of the Usage Field in Table 7-3 and Table 7-4

	7.4 Conventions and Requirements

	8.0 Automation System to Injector Communication
	8.1 Initialization
	8.1.1 init_request AS ==> IJ
	8.1.2 init_response IJ ==> AS

	8.2 Alive (“Heartbeat”) Communications
	8.2.1 alive_request AS ==> IJ
	8.2.1.1 Semantics of fields in alive_request_data ()

	8.2.2 alive_response IJ ==> AS
	8.2.2.1 Semantics of fields in alive_response_data ()

	8.3 Splice Requests
	8.3.1 splice request AS ==> IJ
	8.3.1.1 Semantics of fields in splice_request_data()
	8.3.1.2 Detailed Discussion of Message Syntax and Semantics

	8.3.2 Mapping of splice_request fields into SCTE 35 [1] splice_insert() fields (Informative)

	8.4 Encryption Support (Normative)
	8.4.1 Encryption Control Word Support
	8.4.2 The encrypted DPI request
	8.4.2.1 Semantics of fields in encrypted_DPI_request_data()

	8.4.3 update_ControlWord request AS ==> IJ
	8.4.3.1 Semantics of fields in update_ControlWord_data()

	8.4.4 delete_ControlWord request AS ==> IJ
	8.4.4.1 Semantics of fields in delete_ControlWord_data()

	8.5 Component Mode Support
	8.5.1 component mode DPI request
	8.5.1.1 Semantics of fields in component_mode_DPI_request_data()

	8.6 Response Messages
	8.6.1 general_response message IJ ==> AS
	8.6.2 inject_response message IJ ==> AS
	8.6.2.1 Semantics of fields in inject_response_data()

	8.6.3 inject_complete response IJ ==> AS
	8.6.3.1 Semantics of fields in inject_complete_response_data()

	8.7 SCTE 35 splice_schedule() Support Requests
	8.7.1 start schedule download request AS ==> IJ
	8.7.1.1 Semantics of fields in start_schedule_download_request_data()

	8.7.2 schedule definition request AS ==> IJ
	8.7.2.1 Semantics of fields in schedule_definition_data()

	8.7.3 The schedule component mode request AS ==> IJ
	8.7.3.1 Semantics of fields in schedule_component_mode_request_data()

	8.7.4 transmit_schedule request
	8.7.4.1 Semantics of fields in transmit_schedule_request_data()

	8.8 Miscellaneous Requests
	8.8.1 time signal request AS ==> IJ
	8.8.1.1 Semantics of fields in time_signal_request_data()

	8.8.2 splice null request
	8.8.3 inject section data request AS ==> IJ
	8.8.3.1 Semantics of fields in inject_section_data_request()

	8.8.4 insert_avail_descriptor request AS ==> IJ
	8.8.4.1 Semantics of fields in insert_avail_descriptor_request_data()

	8.8.5 insert_descriptor request AS ==> IJ
	8.8.5.1 Semantics of fields in insert_descriptor_request_data()

	8.8.6 insert_DTMF_descriptor request AS ==> IJ
	8.8.6.1 Semantics of fields in insert_DTMF_descriptor_request_data()

	8.8.7 insert_segmentation_descriptor request AS ==> IJ
	8.8.7.1 Semantics of fields in insert_segmentation_descriptor_request_data()

	8.8.8 proprietary_command request AS ==> IJ
	8.8.8.1 Semantics of fields in proprietary_command_request_data()

	8.8.9 insert_tier_data request AS ==> IJ
	8.8.9.1 Semantics of fields in insert_tier_data()

	9.0 PAMS to the Automation System Communications
	9.1 System Design Philosophy
	9.1.1 TCP/IP Data Communications
	9.1.2 Bi-directional Serial Data Communications

	9.2 PAMS Functionality
	9.2.1 System Initialization and Service Discovery
	9.2.2 Data Communications Channel Maintenance
	9.2.3 System Restart from Maintenance or Redundancy Change
	9.2.4 Injector Provisioning and de-provisioning in real-time
	9.2.5 Service Addition and Subtraction in real-time
	9.2.6 Failure Reporting
	9.2.7 Appropriate Reaction to Failures
	9.2.8 System Initialization

	9.3 Service Continuity
	9.4 System Initialization Messages
	9.4.1 config_request message AS ==> PAMS
	9.4.1.1 Semantics of fields in config_request_data()
	9.4.1.2 Detailed Discussion of Message Syntax and Semantics

	9.4.2 config_response message PAMS ==> AS
	9.4.2.1 Semantics of fields in config_response_data()

	9.5 Injector Service Notification
	9.5.1 provisioning_request message PAMS ==> AS
	9.5.1.1 Semantics of fields in provisioning_request_data()
	9.5.1.2 Detailed Discussion of Message Syntax and Semantics

	9.5.2 provisioning_response message AS ==> PAMS

	9.6 Failure Notification Messages (Device or Communications)
	9.6.1 fault_request message AS ==> PAMS
	9.6.1.1 Semantics of fields in fault_request_data()

	9.6.2 fault_response message PAMS ==> AS

	9.7 PAMS to AS permanent “link alive” messages
	9.7.1 AS_alive_request PAMS ==> AS
	9.7.2 AS_alive_response AS ==> PAMS

	9.8 PAMS to AS Common Elements
	9.8.1 injector_component_list() Definition
	9.8.1.1 Semantic definition of fields in injector_component_list()

	10.0 PAMS to Injector Communications (INFORMATIVE)
	10.1 The PAMS Implementation
	10.2 Injector Provisioning
	10.3 PAMS Structure
	10.4 Support of multiple DPI PIDs

	11.0 Common Elements
	11.1 Values of splice_event_id used in this Interface
	11.2 Values of unique_program_id used in this Interface
	11.3 Minimum Pre-roll Time Supported by this Interface
	11.4 time() Definition
	11.4.1 Semantic definition of fields in time()

	11.5 timestamp() Definition
	11.5.1 Semantic definition of fields in timestamp()

	12.0 SYSTEM ARCHITECTURE AND PROVISIONING (INFORMATIVE)
	12.1 One Way Protocol – Automation System to Injector
	12.1.1 System Architecture Summary
	12.1.2 Automation System Provisioning Requirements
	12.1.2.1 Service Definition and DPI_PID_index
	12.1.2.2 Automation Index (AS_index field)
	12.1.2.3 Time
	12.1.2.4 Encryption in the Automation System
	12.1.2.5 DTMF Descriptors

	12.1.3 Automation System (Injector Messages
	12.1.3.1 Supported Messages
	12.1.3.2 Optional Commands
	12.1.3.3 Unused Commands

	12.1.4 Flow Diagrams

	12.2 Two Way Protocol – Automation System to Injector Only
	12.2.1 System Architecture Summary
	12.2.2 Automation System Provisioning Requirements
	12.2.2.1 IP Address and Port

	12.2.3 Service Definition and DPI_PID_index
	12.2.3.1 Non Component Mode Support
	12.2.3.2 Component Mode Support

	12.2.4 Multiple Injector Instance Support
	12.2.4.1 IP Port Segmentation
	12.2.4.2 DPI PID Index Segmentation

	12.2.5 Automation Index (AS_index field)
	12.2.6 Time
	12.2.7 Encryption in the Automation System
	12.2.8 DTMF Descriptors
	12.2.9 Automation System (Injector Messages
	12.2.9.1 Supported Messages
	12.2.9.2 Optional Commands
	12.2.9.3 Unused Commands

	12.2.10 Flow Diagrams

	12.3 Two Way Protocol – Automation System to Injector with PAMS
	12.3.1 System Architecture Summary
	12.3.2 Automation System Provisioning Requirements
	12.3.2.1 IP Address and Port for PAMS
	12.3.2.2 Service Name
	12.3.2.3 Time
	12.3.2.4 Encryption in the Automation System
	12.3.2.5 DTMF Descriptors

	12.3.3 PAMS Supplied Information
	12.3.3.1 Injector Configuration
	12.3.3.2 Multiple Injector Instance Support
	12.3.3.3 Service Information
	12.3.3.4 Automation Index (AS_index field)

	12.3.4 Automation System (Injector Messages
	12.3.4.1 Supported Messages
	12.3.4.2 Optional Commands

	12.3.5 Automation System (PAMS Messages
	12.3.6 Flow Diagrams AS (Injector
	12.3.7 Flow Diagrams AS (PAMS

	13.0 Result Codes (NORMATIVE)
	appendix A: TCP/IP Conveyance
	Appendix B: ANSI/TIA/EIA-232-F Conveyance
	B.1 The Basic Link Layer Syntax
	B.1.1 Semantics of fields in serial_linklayer()
	B.1.2 Detailed Discussion of Message Syntax and Semantics

	B.2 The Escape Sequence

	Appendix C: DIGITAL Video System Conveyance (INFORMATIVE)
	Appendix D: Analog Video System Conveyance

