

ENGINEERING COMMITTEE
Digital Video Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 35 2013

Digital Program Insertion Cueing Message for Cable

1

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards are intended to serve the public
interest by providing specifications, test methods and procedures that promote uniformity of product,
interchangeability and ultimately the long term reliability of broadband communications facilities.
These documents shall not in any way preclude any member or non-member of SCTE from
manufacturing or selling products not conforming to such documents, nor shall the existence of such
standards preclude their voluntary use by those other than SCTE members, whether used domestically or
internationally.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the Standards. Such
adopting party assumes all risks associated with adoption of these Standards, and accepts full
responsibility for any damage and/or claims arising from the adoption of such Standards.

Attention is called to the possibility that implementation of this standard may require the use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. SCTE shall not be responsible for
identifying patents for which a license may be required or for conducting inquiries into the legal validity
or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this
standard have been requested to provide information about those patents and any related licensing terms
and conditions. Any such declarations made before or after publication of this document are available
on the SCTE web site at http://www.scte.org.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc. 2013
140 Philips Road
Exton, PA 19341

2

 Contents

1 Scope ... 5
2 References .. 5

2.1 Normative references ... 5
2.2 Informative References ... 6

3 Definition of terms ... 7
4 Abbreviations .. 9
5 Introduction .. 10

5.1 Splice points (Informative) .. 10
5.2 Program Splice Points (Informative) ... 11
5.3 Splice events (Informative).. 11
5.4 Content Storage Considerations (Informative) .. 12
5.5 PID selection ... 12

5.5.1 PID Selection (Normative) .. 12
5.5.2 PID Selection (Informative) ... 12

5.6 Message flow (Informative) ... 13
6 PMT Descriptors .. 14

6.1 Registration Descriptor ... 14
6.1.1 Semantic definition of fields in Registration Descriptor ... 14

6.2 Cue Identifier Descriptor .. 14
6.2.1 Semantic definition of fields in Cue Identifier Descriptor ... 15
6.2.2 Description of cue_stream_type usage .. 15

6.3 Stream Identifier Descriptor ... 16
6.3.1 Semantic definition of fields in Stream Identifier Descriptor .. 16

7 Splice Information Table ... 17
7.1 Overview ... 17

7.1.1 Time Base Discontinuities ... 18

7.2 Splice Info Section .. 18
7.2.1 Semantic definition of fields in splice_info_section() ... 19

7.3 Splice Commands ... 21
7.3.1 splice_null() ... 21
7.3.2 splice_schedule().. 22
7.3.3 splice_insert() ... 23
7.3.4 time_signal() .. 25
7.3.5 bandwidth_reservation() .. 26

3

7.3.6 private_command() .. 26

7.4 Time ... 27
7.4.1 splice_time() .. 27
7.4.2 break_duration() ... 27

7.5 Constraints.. 28
7.5.1 Constraints on splice_info_section().. 28
7.5.2 Constraints on the interpretation of time ... 29

8 Splice Descriptors ... 31
8.1 Overview ... 31
8.2 Splice Descriptor .. 31

8.2.1 Semantic definition of fields in splice_descriptor() ... 32

8.3 Specific Splice Descriptors .. 32
8.3.1 avail_descriptor() ... 32
8.3.2 DTMF_descriptor() .. 33
8.3.3 segmentation_descriptor() .. 34

9 Encryption .. 43
9.1 Overview ... 43
9.2 Fixed Key Encryption .. 43
9.3 Encryption Algorithms .. 43

9.3.1 DES – ECB mode .. 44
9.3.2 DES – CBC mode .. 44
9.3.3 Triple DES EDE3 – ECB mode ... 44
9.3.4 User Private Algorithms .. 44

4

List Of Tables

Table 6-1. registration_descriptor() ... 14
Table 6-2. cue_identifier_descriptor() ... 15
Table 6-3. cue_stream_type Values ... 15
Table 6-4. stream_identifier_descriptor() .. 16
Table 7-1. splice_info_section() .. 18
Table 7-2. splice_command_type Values .. 21
Table 7-3. splice_null() .. 21
Table 7-4. splice_schedule() .. 22
Table 7-5. splice_insert() ... 24
Table 7-6. time_signal() ... 26
Table 7-7. bandwidth_reservation() ... 26
Table 7-8. private_command()... 26
Table 7-9. splice_time() ... 27
Table 7-10. break_duration() ... 28
Table 8-1. Splice Descriptor Tags ... 31
Table 8-2. splice_descriptor() .. 31
Table 8-3. avail_descriptor() .. 32
Table 8-4. DTMF_descriptor() .. 33
Table 8-5. segmentation_descriptor() .. 34
Table 8-6. device_restrictions .. 36
Table 8-7. segmentation_upid_type ... 37
Table 8-8. segmentation_type_id ... 38
Table 8-9. MPU() .. 39
Table 8-10. MID() ... 40
Table 9-1. Encryption Algorithm ... 44

5

Digital Program Insertion Cueing Message for Cable

1 Scope

This standard supports frame accurate signaling of events in MPEG-2 transport streams along with
associated descriptive data. This standard supports the splicing of MPEG-2 transport streams for the
purpose of Digital Program Insertion, which includes advertisement insertion and insertion of other
content types. An in-stream messaging mechanism is defined to signal splicing and insertion
opportunities and it is not intended to ensure seamless splicing. As such, this recommendation does not
specify the splicing method used or constraints applied to the streams being spliced, nor does it address
constraints placed on splicing devices.

A fully compliant MPEG-2 transport stream (either Multi Program Transport Stream or Single Program
Transport Stream) is assumed. No further constraints beyond the inclusion of the defined cueing
messages are placed upon the stream.

This standard specifies a technique for carrying notification of upcoming Splice Points and other timing
information in the transport stream. A splice information table is defined for notifying downstream
devices of splice events, such as a network break or return from a network break. The splice
information table, which pertains to a given program, is carried in one or more PID(s) referred to by that
program’s Program Map Table (PMT). In this way, splice event notification can pass through most
transport stream remultiplexers without need for special processing.

2 References

2.1 Normative references

The following documents contain provisions, which, through reference in this text constitute provisions
of the standard. At the time of Subcommittee approval, the editions indicated were valid. All standards
are subject to revision; and while parties to any agreement based on this standard are encouraged to
investigate the possibility of applying the most recent editions of the documents listed below, they are
reminded that newer editions of those documents may not be compatible with the referenced version.

ISO 15706-2:2007 – Information and Documentation - International Standard Audiovisual Number (V-
ISAN) – Part 2: Version Identifier

ITU-T Recommendation H.222.0 / ISO/IEC 13818-1 (2000), Information Technology ---- Generic
Coding of Moving Pictures and Associated Audio Information: Systems

MD-SP-VOD-CONTENTv1.1- C01-120803 – CableLabs Video-on-Demand Content Specification 1.1

SMPTE 330M-2004 – SMPTE Standard for Television - Unique Material Identifier

FIPS PUB 46-3, 1999 October 25, Data Encryption Standard

6

FIPS PUB 81, 1980 December 2, DES Modes of Operation

ATSC A/57B - ATSC Standard: Content Identification and Labeling for ATSC Transport Document
A/57B, 26 May 2008

RFC 3986, “Uniform Resource Identifier (URI): Generic Syntax”, January 2005,
www.ietf.org/rfc/rfc3986.txt

EIDR ID Format – “EIDR: ID FORMAT Ver. 1.02 30 January 2012”,
http://eidr.org/documents/EIDR_ID_Format_v1.02_Jan2012.pdf

2.2 Informative References

Advertising Digital Identification, LLC - http://www.ad-id.org/

ISO 15706-1:2002 – Information and Documentation - International Standard Audiovisual Number
(ISAN)

ISO 15706-1:2002/Amd 1:2008 – Alternate Encodings and editorial changes

ISAN (International Standard Audiovisual Number) website – http://www.isan.org

MD-SP-CONTENTv3.0-I01-100812 – Metadata Specifications Cablelabs Content 3.0 Specification

Digital Object Identifier website – http://www.doi.org

Entertainment ID Registry Association (EIDR) http://eidr.org

ITU-T Recommendation H.262 / ISO/IEC 13818-2 (2000), Information Technology ---- Generic Coding
of Moving Pictures and Associated Audio Information: video

ISO/IEC 13818–4: 2004 – Information Technology – Generic coding of moving pictures and associated
audio information – Part 4: Conformance testing

SCTE 30 2009 – Digital Program Insertion Splicing API

SCTE 67 2010 – Digital Program Insertion Cueing Message for Cable – Interpretation for SCTE 35

SCTE 118-2 2012 – Program-Specific Ad Insertion – Content Provider to Traffic Communication
Applications Data Model

SMPTE Registration Authority, LLC – http://www.smpte-ra.org/

SMPTE 312M – 2001 - SMPTE STANDARD for Television - Splice Points for MPEG-2 Transport
Streams

SCTE 172 2011 – Constraints on AVC Video Coding for Digital Program Insertion

http://www.ietf.org/rfc/rfc3986.txt
http://www.isan.org/
http://www.doi.org/

7

3 Definition of terms
Throughout this standard the terms below have specific meanings. Because some of the terms that are
defined in ISO/IEC 13818 have very specific technical meanings, the reader is referred to the original
source for their definition. For terms defined by this standard, brief definitions are given below.

Access Unit: A coded representation of a presentation unit (see ITU-T H.262 / ISO/IEC 13818-1 2.1.1).

Advertisement (also called “ad”): an inducement to buy or patronize. As used in the cable industry,
usually with a duration under 2 minutes (sometimes called “short-form” content).

Analog Cue Tone: in an analog system, a signal that is usually either a sequence of DTMF tones or a
contact closure that denotes to ad insertion equipment that an advertisement avail is about to begin or
end.

Avail: time space provided to cable operators by cable programming services during a program for use
by the CATV operator; the time is usually sold to local advertisers or used for channel self promotion.

Break: avail or an actual insertion in progress.

Chapter: a short section of a longer program, usually situated to permit a viewer to easily locate a
scene or section of the program.

Component Splice Mode: a mode of the cueing message whereby the program_splice_flag is set to ‘0’
and indicates that each PID/component that is intended to be spliced will be listed separately by the
syntax that follows. Components not listed in the message are not to be spliced.

Content: Generic term for television material, either advertisements or programs.

Cueing Message: see message.

Deprecated: Use is permissible for legacy purposes only. Deprecated features may be removed from
future versions of the standard. Implementations should avoid use of deprecated features.

Event: a splice event or a viewing event.

In Point: a point in the stream, suitable for entry, that lies on an elementary presentation unit boundary.
An In Point is actually between two presentation units rather than being a presentation unit itself.

In Stream Device: A device that receives the transport stream directly and is able to derive timing
information directly from the transport stream.

Message: in the context of this document a message is the contents of any splice_info_section.

Multi Program Transport Stream: A transport stream with multiple programs.

8

Out of Stream Device: A device that receives the cue message from an in stream device over a separate
connection from the transport stream. An out of stream device does not receive or pass the transport
stream directly.

Out Point: a point in the stream, suitable for exit, that lies on an elementary presentation unit boundary.
An Out Point is actually between two presentation units rather than being a presentation unit itself.

payload_unit_start_indicator: a bit in the transport packet header that signals, among other things, that
a section begins in the payload that follows (see ITU-T H.222.0 / ISO/IEC 13818-1).

PID: Packet identifier; a unique 13-bit value used to identify the type of data stored in the packet
payload (see ITU-T H.222.0 / ISO/IEC 13818-1).

PID stream: All the packets with the same PID within a transport stream.

pointer_field: the first byte of a transport packet payload, required when a section begins in that packet
(see ITU-T H.222.0 / ISO/IEC 13818-1).

Presentation Time: the time that a presentation unit is presented in the system target decoder (see
ITU-T H.222.0 / ISO/IEC 13818-1).

Presentation Unit: A decoded Audio Access Unit or a decoded picture (see ITU-T H.262 / ISO/IEC
13818-1 2.1.40).

Program: A collection of video, audio, and data PID streams that share a common program number
within an MPTS (see ITU-T H.222.0 / ISO/IEC 13818-1). As used in the context of the segmentation
descriptor, a performance or informative presentation broadcast on television, typically with a duration
over 5 minutes (sometimes called “long-form” content).

Program In Point: a group of PID stream In Points that correspond in presentation time.

Program Out Point: a group of PID stream Out Points that correspond in presentation time.

Program Splice Mode: a mode of the cueing message whereby the program_splice_flag is set to ‘1’
and indicates that the message refers to a Program Splice Point and that all PIDs/components of the
program are to be spliced.

Program Splice Point: a Program In Point or a Program Out Point.

Receiving Device: A device that receives or interprets sections conforming to this standard. Examples
of these devices include splicers, ad servers, segmenters and satellite receivers.

Registration Descriptor: carried in the PMT of a program to indicate that, when signaling splice
events, splice_info_sections shall be carried in a PID stream within this program. The presence of the
Registration Descriptor signifies a program’s compliance with this standard.

9

reserved: The term “reserved”, when used in the clauses defining the coded bit stream, indicates that the
value may be used in the future for extensions to the standard. Unless otherwise specified, all reserved
bits shall be set to ‘1’ and this field shall be ignored by receiving equipment.

Segment: either a Program, a Chapter, a Provider Advertisement, a Distributor Advertisement, or an
Unscheduled Event as listed in Table 8-7, segmentation_type_id.

Single Program Transport Stream: A transport stream containing a single MPEG program.

Splice Event: an opportunity to splice one or more PID streams.

Splice Immediate Mode: a mode of the cueing message whereby the splicing device shall choose the
nearest opportunity in the stream, relative to the splice_info_table, to splice. When not in this mode, the
message gives a “pts_time” that, when modified by pts_adjustment, gives a presentation time for the
intended splicing moment.

Splice Point: a point in a PID stream that is either an Out Point or an In Point.

URI: Uniform Resource Identifier—See [RFC3986].

Viewing Event: a television program or a span of compressed material within a service; as opposed to a
splice event, which is a point in time.

4 Abbreviations
This document uses the following abbreviations:

ADI: Asset Distribution Interface

Ad-ID: Advertisement Identifier

ATSC: Advanced Television Systems Committee.

bslbf: Bit string, left bit first, where left is the order in which bit strings are written.

DVB: Digital Video Broadcast

FIPS: Federal Information Processing Standard

ISAN: International Standard Audiovisual Number (see ISO 15706)

ISCI: Industry Standard Commercial Identifier

MPTS: a Multi Program Transport Stream.

PMT: Program Map Table (see ITU-T H.222.0 / ISO/IEC 13818-1).

10

PTS: Presentation Time Stamp (see ITU-T H.222.0 / ISO/IEC 13818-1).

rpchof: Remainder polynomial coefficients, highest order first.

SPTS: a Single Program Transport Stream.

STC: System Time Clock

TI: Turner Identifier

TID: Tribune Identifier

uimsbf: Unsigned integer, most significant bit first.

UMID: Unique Material Identifier

V-ISAN: Version-ISAN (core ISAN number plus a version number) (see ISO 15706-2)

5 Introduction

5.1 Splice points (Informative)

To enable the splicing of compressed bit streams, this standard defines Splice Points. Splice Points in an
MPEG-2 transport stream provide opportunities to switch elementary streams from one source to
another. They indicate a place to switch or a place in the bit stream where a switch can be made.
Splicing at such splice points may or may not result in good visual and audio quality. That is
determined by the performance of the splicing device.

Transport streams are created by multiplexing PID streams. In this standard, two types of Splice Points
for PID streams are defined: Out Points and In Points. In Points are places in the bit streams where it is
acceptable to enter, from a splicing standpoint. Out Points are places where it is acceptable to exit the
bit stream. The grouping of In Points of individual PID streams into Program In Points in order to
enable the switching of entire programs (video with audio) is defined. Program Out Points for exiting a
program are also defined.

Out Points and In Points are imaginary points in the bit stream located between two elementary stream
presentation units. Out Points and In Points are not necessarily transport packet aligned and are not
necessarily PES packet aligned. An Out Point and an In Point may be co-located; that is, a single
presentation unit boundary may serve as both a safe place to leave a bit stream and a safe place to enter
it.

The output of a simple switching operation will contain access unit data from one stream up until its Out
Point followed by data from another stream starting with the first access unit following an In Point.
More complex splicing operations may exist whereby data prior to an Out Point or data after an In Point
are modified by a splicing device. Splicing devices may also insert data between one stream’s Out Point

11

and the other stream’s In Point. The behavior of splicing devices will not be specified or constrained in
any way by this standard.

5.2 Program Splice Points (Informative)

Program In Points and Program Out Points are sets of PID stream In Points or Out Points that
correspond in presentation time.

Although Splice Points in a Program Splice Point correspond in presentation time, they do not usually
appear near each other in the transport stream. Because compressed video takes much longer to decode
than audio, the audio Splice Points may lag the video Splice Points by as much as hundreds of
milliseconds and by an amount that can vary during a program.

This standard defines two ways of signaling which splice points within a program are to be spliced. A
program_splice_flag, when true, denotes that the Program Splice Mode is active and that all PIDs of a
program may be spliced (the splice information table PID is an exception; splicing or passage of these
messages is beyond the scope of this standard). A program_splice_flag, when false, indicates that the
Component Splice Mode is active and that the message will specify unambiguously which PIDs are to
be spliced and may give a unique splice time for each. This is required to direct the splicing device to
splice or not to splice various unspecified data types as well as video and audio.

While this standard allows for a unique splice time to be given for each component of a program, it is
expected that most Component Splice Mode messages will utilize one splice time (a default splice time)
for all components as described in section 7. The facility for optionally specifying a separate splice time
for each component is intended to be used when one or more components differ significantly in their
start or stop time relative to other components within the same message. An example would be a
downloaded applet that must arrive at a set-top box several seconds prior to an advertisement.

5.3 Splice events (Informative)

This standard provides a method for in-band signaling of splice events using splice commands to
downstream splicing equipment. Signaling a splice event identifies which Splice Point within a stream
to use for a splice. A splicing device may choose to act or not act upon a signaled event (a signaled
event should be interpreted as an opportunity to splice; not a command). A splice information table
carries the notice of splice event opportunities. Each signaled splice event is analogous to an analog cue
tone. The splice information table incorporates the functionality of cue tones and extends it to enable
the scheduling of splice events in advance.

This standard establishes that the splice information table is carried on a per-program basis in one or
more PID stream(s) with a designated stream_type. The program’s splice information PID(s) are
designated in the program’s program map table (PMT). In this way, the splice information table is
switched with the program as it goes through remultiplexing operations. A common stream_type
identifies all PID streams that carry splice information tables. Remultiplexers or splicers may use this
stream_type field to drop splice information prior to sending the transport stream to the end-user device.

The cue injection equipment may send messages at intervals that do not indicate a splice point to be used
as heartbeat messages which help insure the proper operation of the system. This could be performed by

12

periodically issuing splice_null() messages or by sending encrypted splice_insert messages generated
with a key that is not distributed. Since cues are currently sent twice per hour on a typical network, an
average interval of 5 minutes would be a reasonable interval. If a message was not received in a 10
minute interval, a receiving device could alarm an operator to a possible system malfunction (such
behavior would be implementer dependent).

5.4 Content Storage Considerations (Informative)

The requirements for identifier uniqueness are written expecting the content to be playing in real time.
If the content is stored, then the playback of the content does not place requirements upon the playback
equipment to alter any of these identifiers (such as splice_event_id or segmentation_event_id).
Downstream equipment parsing the identifiers should keep this in mind and, if applicable, rely upon
other confirming information before reacting adversely to a seeming violation of the identifier
uniqueness requirements of this standard.

This standard provides optional tools to assist with segmenting content into shorter sections which may
be either chapters or advertisements. See Section 8.3.3.

5.5 PID selection

5.5.1 PID Selection (Normative)

Splice Information can be carried in multiple PIDs. The maximum number of PIDs that can carry splice
information shall not exceed 8. These PIDs can be either in the clear (where the transport
scrambling_control bits are set to '00') or scrambled by a CA system. Each cue message PID may
include the cue_identifier_descriptor defined in section 6.2 to describe the splice commands included in
the PID. When multiple PIDs are used to carry splice information, the first cue message PID in the
Program Map Table shall only contain the splice command types 0x00 (splice_null), 0x04
(splice_schedule) and 0x05 (splice_insert). In addition, the splice_event_id shall be unique in all splice
information PIDs within the program.

5.5.2 PID Selection (Informative)

While the use of multiple cue message PIDs is an allowed practice, it should be noted that not all
equipment may respond in the same manner to a stream that contains multiple cue message PIDs. Some
equipment may limit the number of PIDs that the equipment can pass or receive. If a system utilizes
multiple PIDs through various devices with the intention of reaching the set-top, it is suggested that
thorough end-end testing be performed.

In many systems, the delivery of PIDs that carry splice information beyond the ad insertion equipment
in the head-end is not desired. In these systems, the splicing or multiplexing device will drop any or all
of these messages (PIDs) so they will not be delivered to the set-top. In other systems it may selectively
pass certain PIDs to the set top to enable set-top functionality. A third possibility is that the splicing or
multiplexing device will aggregate the multiple PIDs that carry splice information into a single PID to
handle downstream, set-top, issues with multiple PIDs. The action of ignoring or passing the message is
recommended to be a user provisioned item, with a suitable default behavior chosen by the implementer.

13

The default operation if a splicing or multiplexing device receives a PID based on this specification with
the scrambling bits set in the header should be to drop that PID and not pass it through to the output.
This ideally should be a user provisioned operation, as in some instances this PID may be descrambled
by a downstream device.

The delivery of messages outside of the receive location to the customer may be based on business
agreements. An example would be that one programmer wants the cue messages passed to set-tops to
enable a targeted advertising method while a different programmer insists that the messages be dropped
to insure that a commercial killer may not utilize the messages.

When multiple splicing PIDs are identified in the PMT, the splicing device should process all of these
PIDs. If the cue_identifier_descriptor is utilized, the splicing or multiplexing device may use that
information to be more selective of the PIDs on which it will act.

Some possible reasons for utilizing multiple PIDs for this message include selective delivery of cue
messages for different tiers of advertising or for separating cue messages from segmentation messages.
While one possible method of handling these issues is to use the encryption methods built in to this
standard, many delivery mechanisms can support conditional delivery by PID in a secure fashion. The
delivery equipment (Satellite transmitter/receiver, remultiplexer) may PID filter the stream to only allow
one or a small number of the PIDs to be passed in-stream. This method may be used to create multiple
programs in the feed based on entitlement. The decision to use one or more PIDs will be based on the
security required and the CA hardware available on the system.

5.6 Message flow (Informative)

The messages described in this document can originate from multiple sources. They are designed to be
sent in-stream to downstream devices. The downstream devices may act on the messages or send them
to a device that is not in-stream to act upon them. An example would be a splicer communicating via
SCTE 30 protocol to an ad server. The in-stream devices could pass the messages to the next device in
the transmission chain, or they could, optionally, drop the messages. Implementers are urged to make
these decisions user provisioned, rather than arbitrarily hard-coded.

Any device that restamps pcr/pts/dts and that passes these cue messages to a downstream device should
modify the pts_time field or the pts_adjustment field in the message in all PIDs conforming to this
standard. Modifying the pts_adjustment field is preferred because the restamping device will not have
to be knowledgeable of the pts_time field that may occur in multiple commands (and possibly in future
commands).

The bandwidth_reservation() message is intended as a message used on a closed path from a satellite
origination system (encoder) to a receiver. It is also intended that this message will be dropped
(replaced by a NULL packet) by the receiver, but this is not required. Should this message reach an in-
stream device (e.g. a splicer) the message should not be forwarded to an out-of-stream device (e.g. Ad
Server) and can either be ignored or passed by an in-stream device. The action of ignoring or passing
the message is recommended to be a user provisioned item, with a suitable default behavior chosen by
the implementer.

14

6 PMT Descriptors

6.1 Registration Descriptor

The registration descriptor (ITU-T H.222.0 / ISO/IEC 13818-1, table 2-46 -- Registration Descriptor,
clause 2.6.8) is defined to identify unambiguously the programs that comply with this standard. The
registration descriptor shall be carried in the program_info loop of the PMT for each program that
complies with this standard. It must reside in all PMTs of all complying programs within a multiplex.
The presence of the registration descriptor also indicates that, when signaling splice events,
splice_info_sections shall be carried in one or more PID stream(s) within this program.

Presence of this registration descriptor in the PMT signals the following:

1. The program elements do not include the splice information table defined by SMPTE 312M.
2. The only descriptors that can be present in the ES_descriptor_loop of the PMT for the PID(s) that

carry the splice_information_table are those that are defined in this specification or user private
descriptors.

Note that this descriptor applies to the indicated program and not to the entire multiplex. The content of
the registration descriptor is specified in Table 6-1 and below:

Table 6-1. registration_descriptor()

Syntax Bits Mnemonic
registration_descriptor() {

descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 SCTE_splice_format_identifier 32 uimsbf
 }

6.1.1 Semantic definition of fields in Registration Descriptor

descriptor_tag – The descriptor_tag is an 8-bit field that identifies each descriptor. For registration
purposes, this field shall be set to 0x05.

descriptor_length – The descriptor_length is an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this registration descriptor,
descriptor_length shall be set to 0x04.

SCTE_splice_format_identifier – SCTE has assigned a value of 0x43554549 (ASCII “CUEI”) to this
4-byte field to identify the program (within a multiplex) in which it is carried as complying with this
standard.

6.2 Cue Identifier Descriptor

The cue_identifier_descriptor may be used in the PMT to label PIDs that carry splice commands so that
they can be differentiated as to the type or level of splice commands they carry. The

15

cue_identifier_descriptor, when present, shall be located in the elementary descriptor loop. If the
cue_identifier_descriptor is not utilized, the stream may carry any valid command in this specification.

Table 6-2. cue_identifier_descriptor()

Syntax Bits Mnemonic
cue_identifier_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 cue_stream_type 8 uimsbf
}

6.2.1 Semantic definition of fields in Cue Identifier Descriptor

descriptor_tag - The descriptor_tag is an 8-bit field that identifies each descriptor. For
cue_identifier_descriptor, this field shall be set to 0x8A.

descriptor_length - The descriptor_length in an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this descriptor, descriptor_length shall be
set to 0x01.

cue_stream_type - This 8-bit field is defined in the following table.

Table 6-3. cue_stream_type Values

cue_stream_type PID usage
0x00 splice_insert, splice_null, splice_schedule
0x01 All Commands
0x02 Segmentation
0x03 Tiered Splicing
0x04 Tiered Segmentation

0x05-0x7f Reserved
0x80 - 0xff User Defined

6.2.2 Description of cue_stream_type usage

0x00 – splice_insert, splice_null, splice_schedule – Only these cue messages are allowed in this PID
stream. There shall be a maximum of one PID identified with this cue_stream_type. If this PID exists,
it shall be the first stream complying with this standard in the PMT elementary stream loop.

0x01 – All Commands – Default if this descriptor is not present. All messages can be used in this PID.

0x02 – Segmentation – This PID carries the time_signal command and the segmentation descriptor. It
may also carry all other commands if needed for the application, but the primary purpose is to transmit
content segmentation information.

0x03 – Tiered Splicing – Tiered Splicing refers to an insertion system where the operator provides
different inserted program possibilities in a given avail for different customers. The physical and logical

16

implementation may be done in several different manners, some of them outside the scope of this
standard.

0x04 – Tiered Segmentation – Tiered Segmentation refers to a system where the operator provides
different program segmentation possibilities for different customers. The physical and logical
implementation may be done in several different manners, some of them outside the scope of this
standard.

0x05-0x7F – Reserved for future extensions to this standard.

0x80-0xFF – User defined range.

6.3 Stream Identifier Descriptor

The stream identifier descriptor may be used in the PMT to label component streams of a service so that
they can be differentiated. The stream identifier descriptor shall be located in the elementary descriptor
loop following the relevant ES_info_length field. The stream identifier descriptor shall be used if either
the program_splice_flag or the program_segmentation_flag is zero. If stream identifier descriptors are
used, a stream identifier descriptor shall be present in each occurrence of the elementary stream loop
within the PMT and shall have a unique component tag within the given program.

Table 6-4. stream_identifier_descriptor()

Syntax Bits Mnemonic

stream_identifier_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 component_tag 8 uimsbf
}

6.3.1 Semantic definition of fields in Stream Identifier Descriptor

descriptor_tag - The descriptor_tag is an 8-bit field that identifies each descriptor. For
stream_identifier_descriptor, this field shall be set to 0x52.

descriptor_length - The descriptor_length in an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this descriptor, descriptor_length shall be
set to 0x01.

component_tag - This 8-bit field identifies the component stream for associating it with a description
given in a component descriptor. Within a program map section each stream identifier descriptor shall
have a different value for this field.

17

7 Splice Information Table

7.1 Overview

The splice information table provides command and control information to the splicer. It notifies the
splicer of splice events in advance of those events. It is designed to accommodate ad insertion in
network feeds. In this environment, examples of splice events would include 1) a splice out of a
network feed into an ad, or 2) the splice out of an ad to return to the network feed. The splice
information table may be sent multiple times and splice events may be cancelled. Syntax for a
splice_info_section is defined to convey the splice information table. The splice_info_section is carried
on one or more PID stream(s) with the PID(s) declared in that program’s PMT.

A splice event indicates the opportunity to splice one or more elementary streams within a program.
Each splice event is uniquely identified with a splice_event_id. Splice events may be communicated in
three ways: they may be scheduled ahead of time, a preroll warning may be given, or a command may
be given to execute the splice event at specified Splice Points. These three types of messages are sent
via the splice_info_section. The splice_command_type field specifies the message being sent.
Depending on the value of this field, different constraints apply to the remaining syntax.

The following command types are specified: splice_null(), splice_schedule(), splice_insert(),
time_signal() and bandwidth_reservation(). If the Receiving Device does not support a command it can
ignore the entire splice_info_section.

The splice_null() command is provided for extensibility. It can be used as a means of providing a
heartbeat message to downstream splicing equipment.

The splice_schedule() command is a command that allows a schedule of splice events to be conveyed in
advance.

The splice_insert() command shall be sent at least once before each splice point. Packets containing the
entirety of the splice_info_table shall always precede the packet that contains the related splice point
(i.e., the first packet that contains the first byte of an access unit whose presentation time most closely
matches the signaled time in the splice_info_section).

In order to give advance warning of the impending splice (a pre-roll function), the splice_insert()
command could be sent multiple times before the splice point. For example, the splice_insert()
command could be sent at 8, 5, 4 and 2 seconds prior to the packet containing the related splice point. In
order to meet other splicing deadlines in the system, any message received with less then 4 seconds of
advance notice may not create the desired result. The splice_insert() message shall be sent at least once
a minimum of 4 seconds in advance of the desired splice time for a network Out Point condition. It is
recommended that, if a return-to-network (an In Point) message is sent, the same minimum 4 second
pre-roll be provided.

The splice_insert() command provides for an optional break_duration() structure to identify the length of
the commercial break. It is recommended that splice_insert() messages with the
out_of_network_indicator set to 1 (a network Out Point) include a break_duration() structure to provide

18

the splicer with an indication of when the network In Point will occur. The break_duration() structure
provides for an optional auto_return flag that, when set to 1, indicates that the splicer is to return to the
network at the end of the break (defined as Auto Return Mode, refer to Section 7.5.2.2). It is
recommended that this Auto Return Mode be used to support dynamic avail durations.

The time_signal() command is provided for extensibility while preserving the precise timing allowed in
the splice_insert() command. This is to allow for new features not directly related to splicing utilizing
the timing capabilities of this specification while causing minimal impact to the splicing devices that
conform to this specification. This allows the device that will be inserting the time into the cue message
to have a defined location.

The bandwidth_reservation() command is provided to allow command insertion devices to utilize a
consistent amount of transport stream bandwidth. Descriptors may be used in this command, but they
can not be expected to be processed and sent downstream to provide signaling information.

There are two methods for changing the parameters of a command once it has been issued. One method
is to cancel the issued command by sending a splice_info_section with the
splice_event_cancel_indicator set and then to send a new splice_info_section with the correct/new
parameters. The other method is to simply send a subsequent message with the new data (without
canceling the old message via a cue message that has the splice_event_cancel_indicator bit set).

7.1.1 Time Base Discontinuities

In the case where a system time base discontinuity is present, packets containing a splice_insert() or
time_signal() command with time expressed in the new time base shall not arrive prior to the occurrence
of the time base discontinuity. Packets containing a splice_insert() or time_signal() command with time
expressed in the previous time base shall not arrive after the occurrence of the time base discontinuity.
See ISO/IEC 13818–4: 2004 – Information Technology – Generic coding of moving pictures and
associated audio information – Part 4: Conformance testing.

The complete syntax is presented below, followed by definition of terms, followed by constraints.

7.2 Splice Info Section

The splice_info_section shall be carried in transport packets whereby only one section or partial section
may be in any transport packet. Splice_info_sections must always start at the beginning of a transport
packet payload. When a section begins in a transport packet, the pointer_field must be present and equal
to 0x00 and the payload_unit_start_indicator bit must be equal to one (per the requirements of section
syntax usage per ITU-T H.222.0 / ISO/IEC 13818-1).

Table 7-1. splice_info_section()

Syntax Bits Mnemonic Encrypted

splice_info_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 private_indicator 1 bslbf

19

 reserved 2 bslbf
 section_length 12 uimsbf

protocol_version 8 uimsbf
encrypted_packet 1 bslbf
encryption_algorithm 6 uimsbf
pts_adjustment 33 uimsbf
cw_index 8 uimsbf
tier 12 bslbf
splice_command_length 12 uimsbf
splice_command_type 8 uimsbf E
if(splice_command_type == 0x00)

 splice_null() E
if(splice_command_type == 0x04)

 splice_schedule() E
if(splice_command_type == 0x05)

 splice_insert() E
if(splice_command_type == 0x06)
 time_signal() E
if(splice_command_type == 0x07)
 bandwidth_reservation() E
if(splice_command_type == 0xff)
 private_command() E

 descriptor_loop_length 16 uimsbf E
for(i=0; i<N1; i++)

 splice_descriptor() E
for(i=0; i<N2; i++)

 alignment_stuffing 8 bslbf E
 if(encrypted_packet)
 E_CRC_32 32 rpchof E
 CRC_32 32 rpchof
}

7.2.1 Semantic definition of fields in splice_info_section()

table_id – This is an 8-bit field. Its value shall be 0xFC.

section_syntax_indicator – The section_syntax_indicator is a 1-bit field that should always be set to ‘0’
indicating that MPEG short sections are to be used.

private_indicator – This is a 1-bit flag that shall be set to 0.

section_length – This is a 12-bit field specifying the number of remaining bytes in the
splice_info_section immediately following the section_length field up to the end of the
splice_info_section. The value in this field shall not exceed 4093.

protocol_version – An 8-bit unsigned integer field whose function is to allow, in the future, this table
type to carry parameters that may be structured differently than those defined in the current protocol. At
present, the only valid value for protocol_version is zero. Non-zero values of protocol_version may be
used by a future version of this standard to indicate structurally different tables.

20

encrypted_packet – When this bit is set to ‘1’, it indicates that portions of the splice_info_section,
starting with splice_command_type and ending with and including E_CRC_32, are encrypted. When
this bit is set to ‘0’, no part of this message is encrypted. The potentially encrypted portions of the
splice_info_table are indicated by an E in the Encrypted column of Table 7-1.

encryption_algorithm – This 6 bit unsigned integer specifies which encryption algorithm was used to
encrypt the current message. When the encrypted_packet bit is zero, this field is present but undefined.
Refer to section 9, and specifically Table 9-1 for details on the use of this field.

pts_adjustment – A 33 bit unsigned integer that appears in the clear and that shall be used by a splicing
device as an offset to be added to the (sometimes) encrypted pts_time field(s) throughout this message to
obtain the intended splice time(s). When this field has a zero value, then the pts_time field(s) shall be
used without an offset. Normally, the creator of a cueing message will place a zero value into this field.
This adjustment value is the means by which an upstream device, which restamps pcr/pts/dts, may
convey to the splicing device the means by which to convert the pts_time field of the message to a
newly imposed time domain.

It is intended that the first device that restamps pcr/pts/dts and that passes the cueing message will insert
a value into the pts_adjustment field, which is the delta time between this device’s input time domain
and its output time domain. All subsequent devices, which also restamp pcr/pts/dts, may further alter
the pts_adjustment field by adding their delta time to the field’s existing delta time and placing the result
back in the pts_adjustment field. Upon each alteration of the pts_adjustment field, the altering device
must recalculate and update the CRC_32 field.

The pts_adjustment shall, at all times, be the proper value to use for conversion of the pts_time field to
the current time-base. The conversion is done by adding the two fields. In the presence of a wrap or
overflow condition the carry shall be ignored.

cw_index – An 8 bit unsigned integer that conveys which control word (key) is to be used to decrypt the
message. The splicing device may store up to 256 keys previously provided for this purpose. When the
encrypted_packet bit is zero, this field is present but undefined.

tier – A 12-bit value used by the SCTE 35 message provider to assign messages to authorization tiers.
This field may take any value between 0x000 and 0xFFF. The value of 0xFFF provides backwards
compatibility and shall be ignored by downstream equipment. When using tier, the message provider
should keep the entire message in a single transport stream packet.

splice_command_length – a 12 bit length of the splice command. The length shall represent the number
of bytes following the splice_command_type up to but not including the descriptor_loop_length.
Devices that are compliant with this version of the standard shall populate this field with the actual
length. The value of 0xFFF provides backwards compatibility and shall be ignored by downstream
equipment.

splice_command_type – An 8-bit unsigned integer assigned one of the values shown in Table 7-2.

21

Table 7-2. splice_command_type Values
splice_command_type value Command
0x00 splice_null
0x01 Reserved
0x02 Reserved
0x03 Reserved
0x04 splice_schedule
0x05 splice_insert
0x06 time_signal
0x07 bandwidth_reservation
0x08 - 0xfe Reserved
0xff private_command

descriptor_loop_length – A 16-bit unsigned integer specifying the number of bytes used in the splice
descriptor loop immediately following.

alignment_stuffing – When encryption is used this field is a function of the particular encryption
algorithm chosen. Since some encryption algorithms require a specific length for the encrypted data, it
is necessary to allow the insertion of stuffing bytes. For example, DES requires a multiple of 8 bytes be
present in order to encrypt to the end of the packet. This allows standard DES to be used, as opposed to
requiring a special version of the encryption algorithm.

When encryption is not used, this field shall not be used to carry valid data but may be present.

E_CRC_32 – This is a 32-bit field that contains the CRC value that gives a zero output of the registers
in the decoder defined in ITU-T H.222.0 / ISO/IEC 13818-1 after processing the entire decrypted
portion of the splice_info_section. This field is intended to give an indication that the decryption was
performed successfully. Hence the zero output is obtained following decryption and by processing the
fields splice_command_type through E_CRC_32.

CRC_32 – This is a 32-bit field that contains the CRC value that gives a zero output of the registers in
the decoder defined in ITU-T H.222.0 / ISO/IEC 13818-1 after processing the entire splice_info_section,
which includes the table_id field through the CRC_32 field. The processing of CRC_32 shall occur
prior to decryption of the encrypted fields and shall utilize the encrypted fields in their encrypted state.

7.3 Splice Commands

7.3.1 splice_null()

The splice_null() command is provided for extensibility of the standard. The splice_null() command
allows a splice_info_table to be sent that can carry descriptors without having to send one of the other
defined commands. This command may also be used as a “heartbeat message” for monitoring cue
injection equipment integrity and link integrity.

Table 7-3. splice_null()
Syntax Bits Mnemonic

splice_null() {

22

}

7.3.2 splice_schedule()

The splice_schedule() command is provided to allow a schedule of splice events to be conveyed in
advance.

Table 7-4. splice_schedule()

Syntax Bits Mnemonic
splice_schedule() {
 splice_count 8 uimsbf
 for (i=0; i<splice_count; i++) {
 splice_event_id 32 uimsbf
 splice_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if (splice_event_cancel_indicator == ‘0’) {
 out_of_network_indicator 1 bslbf
 program_splice_flag 1 bslbf
 duration_flag 1 bslbf
 reserved 5 bslbf
 if (program_splice_flag == ‘1’)
 utc_splice_time 32 uimsbf
 if (program_splice_flag == ‘0’) {
 component_count 8 uimsbf
 for(j=0;j<component_count;j++) {
 component_tag 8 uimsbf
 utc_splice_time 32 uimsbf
 }
 }
 if (duration_flag)
 break_duration()
 unique_program_id 16 uimsbf
 avail_num 8 uimsbf
 avails_expected 8 uimsbf
 }
 }
}

7.3.2.1 Semantic definition of fields in splice_schedule()
splice_count – An 8-bit unsigned integer that indicates the number of splice events specified in the loop
that follows.

splice_event_id – A 32-bit unique splice event identifier.

splice_event_cancel_indicator – A 1-bit flag that when set to ‘1’ indicates that a previously sent splice
event, identified by splice_event_id, has been cancelled.

out_of_network_indicator – A 1-bit flag. When set to ‘1’, indicates that the splice event is an
opportunity to exit from the network feed and that the value of utc_splice_time shall refer to an intended
Out Point or Program Out Point. When set to ‘0’, the flag indicates that the splice event is an

23

opportunity to return to the network feed and that the value of utc_splice_time shall refer to an intended
In Point or Program In Point.

program_splice_flag – A 1-bit flag that, when set to ‘1’, indicates that the message refers to a Program
Splice Point and that the mode is the Program Splice Mode whereby all PIDs/components of the
program are to be spliced. When set to ‘0’, this field indicates that the mode is the Component Splice
Mode whereby each component that is intended to be spliced will be listed separately by the syntax that
follows.

duration_flag – A 1-bit flag that indicates the presence of the break_duration() field.

utc_splice_time – A 32-bit unsigned integer quantity representing the time of the signaled splice event
as the number of seconds since 00 hours UTC, January 6th, 1980, with the count of intervening leap
seconds included. The utc_splice_time may be converted to UTC without the use of the
GPS_UTC_offset value provided by the System Time table. The utc_splice_time field is used only in
the splice_schedule() command.

component_count – An 8-bit unsigned integer that specifies the number of instances of elementary PID
stream data in the loop that follows. Components are equivalent to elementary PID streams.

component_tag – An 8-bit value that identifies the elementary PID stream containing the Splice Point
specified by the value of splice_time() that follows. The value shall be the same as the value used in the
stream_identification_descriptor() to identify that elementary PID stream.

unique_program_id – This value should provide a unique identification for a viewing event within the
service. Note: See SCTE 118-2 for guidance in setting values for this field.

avail_num – (previously ‘avail’) This field provides an identification for a specific avail within one
unique_program_id. This value is expected to increment with each new avail within a viewing event.
This value is expected to reset to one for the first avail in a new viewing event. This field is expected to
increment for each new avail. It may optionally carry a zero value to indicate its non-usage.

avails_expected – (previously ‘avail_count’) This field provides a count of the expected number of
individual avails within the current viewing event. When this field is zero, it indicates that the
avail_num field has no meaning.

7.3.3 splice_insert()

The splice_insert() command shall be sent at least once for every splice event. Please reference section
5.3 for the use of this message.

24

Table 7-5. splice_insert()

Syntax Bits Mnemonic
splice_insert() {
 splice_event_id 32 uimsbf
 splice_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if(splice_event_cancel_indicator == ‘0’) {
 out_of_network_indicator 1 bslbf
 program_splice_flag 1 bslbf
 duration_flag 1 bslbf
 splice_immediate_flag 1 bslbf
 reserved 4 bslbf
 If((program_splice_flag == ‘1’) && (splice_immediate_flag == ‘0’))
 splice_time()
 if(program_splice_flag == ‘0’) {
 component_count 8 uimsbf
 for(i=0;i<component_count;i++) {
 component_tag 8 uimsbf
 if(splice_immediate_flag == ‘0’)
 splice_time()
 }
 }
 if(duration_flag == ‘1’)
 break_duration()
 unique_program_id 16 uimsbf
 avail_num 8 uimsbf
 avails_expected 8 uimsbf
 }
}

7.3.3.1 Semantic definition of fields in splice_insert()
splice_event_id – A 32-bit unique splice event identifier.

splice_event_cancel_indicator – A 1-bit flag that when set to ‘1’ indicates that a previously sent splice
event, identified by splice_event_id, has been cancelled.

out_of_network_indicator – A 1-bit flag. When set to ‘1’, indicates that the splice event is an
opportunity to exit from the network feed and that the value of splice_time(), as modified by
pts_adjustment, shall refer to an intended Out Point or Program Out Point. When set to ‘0’, the flag
indicates that the splice event is an opportunity to return to the network feed and that the value of
splice_time(), as modified by pts_adjustment, shall refer to an intended In Point or Program In Point.

program_splice_flag – A 1-bit flag that, when set to ‘1’, indicates that the message refers to a Program
Splice Point and that the mode is the Program Splice Mode whereby all PIDs/components of the
program are to be spliced. When set to ‘0’, this field indicates that the mode is the Component Splice
Mode whereby each component that is intended to be spliced will be listed separately by the syntax that
follows.

duration_flag – A 1-bit flag that, when set to ‘1’, indicates the presence of the break_duration() field.

25

splice_immediate_flag –When this flag is ‘1’, it indicates the absence of the splice_time() field and that
the splice mode shall be the Splice Immediate Mode, whereby the splicing device shall choose the
nearest opportunity in the stream, relative to the splice information packet, to splice. When this flag is
‘0’, it indicates the presence of the splice_time() field in at least one location within the splice_insert()
command.

component_count – An 8-bit unsigned integer that specifies the number of instances of elementary PID
stream data in the loop that follows. Components are equivalent to elementary PID streams.

component_tag – An 8-bit value that identifies the elementary PID stream containing the Splice Point
specified by the value of splice_time() that follows. The value shall be the same as the value used in the
stream_identification_descriptor() to identify that elementary PID stream.

unique_program_id – This value should provide a unique identification for a viewing event within the
service. Note: See SCTE 118-2 for guidance in setting values for this field.

avail_num – (previously ‘avail’) This field provides an identification for a specific avail within one
unique_program_id. This value is expected to increment with each new avail within a viewing event.
This value is expected to reset to one for the first avail in a new viewing event. This field is expected to
increment for each new avail. It may optionally carry a zero value to indicate its non-usage.

avails_expected – (previously ‘avail_count’) This field provides a count of the expected number of
individual avails within the current viewing event. When this field is zero, it indicates that the avail
field has no meaning.

7.3.4 time_signal()

The time_signal() provides a time synchronized data delivery mechanism. The syntax of the
time_signal() allows for the synchronization of the information carried in this message with the System
Time Clock (STC). The unique payload of the message is carried in the descriptor, however the syntax
and transport capabilities afforded to splice_insert() messages are also afforded to the time_signal().
The carriage however can be in a different PID than that carrying the other cue messages used for
signaling splice points.

If the time_specified_flag is set to 0, indicating no pts_time in the message, then the command shall be
interpreted as an immediate command. It must be understood that using it in this manner will cause an
unspecified amount of accuracy error.

Since the time_signal() command utilizes descriptors for most of the specific information, this command
could exceed one MPEG transport packet in length. It is strongly recommended to keep this command
to one packet if possible. This may not always be possible in situations, for example, where the unique
information is long or where another specification is used for the definition of this unique information.

26

Table 7-6. time_signal()

Syntax Bits Mnemonic
time_signal() {
 splice_time()
}

7.3.4.1 Semantic definition of time_signal()
This time_signal() provides a uniform method of associating a pts_time sample with an arbitrary
descriptor (or descriptors) as provided by the splice_info_section syntax (see Table 7-1). Please refer to
section 8 for Splice Descriptors.

7.3.5 bandwidth_reservation()

The bandwidth_reservation() command is provided for reserving bandwidth in a multiplex. A typical
usage would be in a satellite delivery system that requires packets of a certain PID to always be present
at the intended repetition rate to guarantee a certain bandwidth for that PID. This message differs from a
splice_null() command so that it can easily be handled in a unique way by receiving equipment (i.e.
removed from the multiplex by a satellite receiver). If a descriptor is sent with this command, it can not
be expected that it will be carried through the entire transmission chain and it should be a private
descriptor that is utilized only by the bandwidth reservation process.

Table 7-7. bandwidth_reservation()
Syntax Bits Mnemonic

bandwidth_reservation() {
}

7.3.6 private_command()

The private_command() structure provides a means to distribute user-defined commands using the
SCTE 35 protocol. The first bit field in each user-defined command is a 32-bit identifier, unique for
each participating vendor. Receiving equipment should skip any splice_info_section() messages
containing private_command() structures with unknown identifiers.

Table 7-8. private_command()
Syntax Bits Mnemonic

private_command() {
 identifier 32 uimsbf
 for(i=0; i<N; i++) {
 private_byte 8 uimsbf
 }
}

identifier - The identifier is a 32-bit field as defined in ISO/IEC 13818-1 [C3], section 2.6.8 and 2.6.9,
for the registration_descriptor() format_identifier. Only identifier values registered and recognized by
SMPTE Registration Authority, LLC should be used. Its use in the private_command() structure shall

27

scope and identify only the private information contained within this command. This 32 bit number is
used to identify the owner of the command.

private_byte - The remainder of the descriptor is dedicated to data fields as required by the descriptor
being defined.

Private means for communicating detailed vendor-unique ancillary information SHOULD be the only
use of such data, and it SHALL NOT provide the same result as a standardized command.

7.4 Time

7.4.1 splice_time()

The splice_time() structure, when modified by pts_adjustment, specifies the time of the splice event.

Table 7-9. splice_time()

Syntax Bits Mnemonic

splice_time() {
 time_specified_flag 1 bslbf
 if(time_specified_flag == 1) {
 reserved 6 bslbf
 pts_time 33 uimsbf
 }
 else
 reserved 7 bslbf
}

7.4.1.1 Semantic definition of fields in splice_time()
time_specified_flag – A 1-bit flag that, when set to ‘1’, indicates the presence of the pts_time field and
associated reserved bits.

pts_time – A 33-bit field that indicates time in terms of ticks of the program’s 90 kHz clock. This field,
when modified by pts_adjustment, represents the time of the intended splice point.

7.4.2 break_duration()

The break_duration() structure specifies the duration of the commercial break(s). It may be used to give
the splicer an indication of when the break will be over and when the network In Point will occur.

28

Table 7-10. break_duration()

Syntax Bits Mnemonic

break_duration() {
 auto_return 1 bslbf
 reserved 6 bslbf
 duration 33 uimsbf
}

7.4.2.1 Semantic definition of fields in break_duration()
auto_return – A 1-bit flag that, when set to ‘1’, denotes that the duration shall be used by the splicing
device to know when the return to the network feed (end of break) is to take place. A splice_insert()
command with out_of_network_indicator set to 0 is not intended to be sent to end this break. When this
flag is ‘0’, the duration field, if present, is not required to end the break because a new splice_insert()
command will be sent to end the break. In this case, the presence of the break_duration field acts as a
safety mechanism in the event that a splice_insert() command is lost at the end of a break.

duration – A 33-bit field that indicates elapsed time in terms of ticks of the program’s 90 kHz clock.

7.5 Constraints

7.5.1 Constraints on splice_info_section()

The splice_info_section shall be carried in one or more PID stream(s) that are specific to a program and
referred to in the PMT. The splice_info_section PID(s) shall be identified in the PMT by stream_type
equal to 0x86.

The splice_info_section carried in one or more PID stream(s) referenced in a program’s PMT shall
contain only information about splice events that occur in that program.

A splice event shall be defined by a single value of splice_event_id.

If the Component Splice Mode will be used, then each elementary PID stream shall be identified by a
stream_identifier_descriptor carried in the PMT loop, one for each PID. The
stream_identifier_descriptor shall carry a component_tag, which uniquely corresponds to one PID
stream among those contained within a program and listed in the PMT for that program.

Any splice_event_id that is sent in a splice_info_section using a splice_schedule() command shall be
sent again prior to the event using a splice_insert() command. Hence, there shall be a correspondence
between the splice_event_id values chosen for particular events signaled by the splice_schedule()
command (distant future) and splice_event_id values utilized in the splice_insert() command (near
future) to indicate the same events.

Splice_event_id values do not need to be sent in an incrementing order in subsequent messages nor must
they increment chronologically. Splice_event_id values may be chosen at random. When utilizing the

29

splice_schedule() command, splice_event_id values shall be unique over the period of the
splice_schedule() command. A splice_event_id value may be re-used when its associated splice time
has passed.

When the splice_immediate_flag is set to 1, the time to splice shall be interpreted as the current time.
This is called the “Splice Immediate Mode”. When this form is used with the splice_insert() command,
the splice may occur at the nearest (prior or subsequent) opportunity that is detected by the splicer. The
“Splice Immediate Mode” may be used for both splicing entry and exit points, i.e. for both states of
out_of_network_indicator.

It shall be allowed that any avail may be ended with a Program Splice Mode message, a Component
Splice Mode message or no message (whereby the break_duration is reached) regardless of the nature of
the message at the beginning of the avail.

7.5.2 Constraints on the interpretation of time

7.5.2.1 Constraints on splice_time() for splice_insert()
For splice_command_type equal to 0x05 (splice_insert()) the following constraints on splice_time()
shall apply:

At least one message for a network Out Point must arrive at least 4 seconds in advance of the signaled
splice time (pts_time as modified by pts_adjustment) if the time is specified. A Splice Immediate Mode
message is allowed for a network Out Point, but the actual splice time is not defined and it is
recommended that Splice Immediate Mode messages only be used for the early termination of breaks.
When non-Splice Immediate Mode cue messages are used for network In Points, the cue message must
arrive at the splicer before the arrival of the signaled In Point picture at the receiver.

An Out Point lies between two presentation units. The intended Out Point of a signaled splice event
shall be the Out Point that is immediately prior to the presentation unit whose presentation time most
closely matches the signaled pts_time as modified by pts_adjustment.

An In Point lies between two presentation units. The intended In Point of a signaled splice event shall
be the In Point that is immediately prior to the presentation unit whose presentation time most closely
matches the signaled pts_time as modified by pts_adjustment.

When the Component Splice Mode is in effect and the out_of_network_indicator is ‘1’ (the beginning of
a break), each component listed in the splice_insert() component loop shall be switched from the
network component to the splicer supplied component at the time indicated. Components not listed in
the component loop of the message will remain unchanged: if a splicer output component was the
network component then it will remain the network component; if a splicer output component was the
splicer supplied component then it will remain the splicer supplied component.

When the Component Splice Mode is in effect and the out_of_network_indicator is ‘0’ (the end of a
break), each component listed in the splice_insert() component loop shall be switched from the splicer
supplied component to the network component at the time indicated. Components not listed in the

30

component loop of the message will remain unchanged: if a splicer output component was the network
component then it will remain the network component; if a splicer output component was the splicer
supplied component then it will remain the splicer supplied component.

When the Component Splice Mode is in effect and the Splice Immediate Mode is not in effect, the first
component listed in the component loop of the splice_insert() command shall have a valid pts_time in its
associated splice_time() and this pts_time is referred to as the default pts_time. Subsequent components
listed in the component loop of the same message, which don’t have an associated pts_time, shall utilize
this default pts_time. It shall be allowed that any and all components following the first listed
component of a splice_insert() command may contain a unique pts_time that is different from the default
pts_time.

In the Component Splice Mode, all pts_time values given in the splice_insert component loop shall be
modified by the pts_adjustment field to obtain each intended value for the signaled Out Point or In
Point. The pts_adjustment, provided by any device that generates or modifies a pts_adjustment field
value, shall apply to all pts_time fields in the message.

7.5.2.2 Constraints on break_duration() for splice_insert()
For splice_command_type equal to 0x05 (insert) the following constraints on break_duration() shall
apply:

The value given in break_duration() is interpreted as the intended duration of the commercial break. It
is an optional field to be used when the out_of_network_indicator equals 1. It may be used in the same
splice_insert() command that specifies the start time of the break, so that the splicer can calculate the
time when the break will be over.

Breaks may be terminated by issuing a splice_insert() command with out_of_network_indicator set to 0.
A splice_time() may be given or the Splice Immediate Mode may be used. When a break_duration was
given at the start of the break (where the auto_return was set to zero), the break_duration value may be
utilized as a backup mechanism for insuring that a return to the network actually happens in the event of
a lost cueing packet.

Breaks may also be terminated by giving a break duration at the beginning of a break and relying on the
splicing device to return to the network feed at the proper time. The auto_return flag must be 1. This
will be referred to as the Auto Return Mode. Auto Return Mode breaks do not require and do not
disallow cue messages at the end of the break with out_of_network_indicator set to 0. Hence a
receiving device should not expect a cue message at the end of a break in order to function properly.
Auto Return Mode breaks may however be terminated early. To end the break prematurely a second
splice_insert() command may be given, where the out_of_network_indicator equals 0. The new time of
the back to network splice may be given by an updated splice_time(), or the Splice Immediate Mode
message may be used. A cue message with out_of_network_indicator set to 0 shall always override the
duration field of a previous cue message (with out_of_network_indicator set to 1) if that break’s
signaled duration is still under way.

31

8 Splice Descriptors

8.1 Overview

The splice_descriptor is a prototype for adding new fields to the splice_info_section. All descriptors
included use the same syntax for the first six bytes. In order to allow private information to be added we
have included the ‘identifier’ code. This removes the need for a registration descriptor in the descriptor
loop.

Any receiving equipment should skip any descriptors with unknown identifiers or unknown descriptor
tags. For descriptors with known identifiers, the receiving equipment should skip descriptors with an
unknown splice_descriptor_tag.

Splice descriptors may exist in the splice_info_section for extensions specific to the various commands.

Implementers note: Multiple descriptors of the same or different types in a single command are allowed
and may be common. One case of multiple segmentation_descriptors is described in Section 8.3.3.2. The
only limit on the number of descriptors is the section_length in Table 7-1, although there may be other
practical or implementation limits.

Table 8-1. Splice Descriptor Tags
Tag Descriptors for Identifier “CUEI”
0x00 avail_descriptor
0x01 DTMF_descriptor
0x02 segmentation_descriptor
0x03 – 0xFF Reserved for future SCTE splice_descriptors

8.2 Splice Descriptor

The Splice Descriptor syntax provided in this section is to be used as a template for specific
implementations of a descriptor intended for the splice_info_section. It should be noted that splice
descriptors are only used within a splice_info_section. They are not to be used within MPEG syntax,
such as the PMT, or in the syntax of any other standard. This allows one to draw on the entire range of
descriptor tags when defining new descriptors.

Table 8-2. splice_descriptor()
Syntax Bits Mnemonic

splice_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 for(i=0; i<N; i++) {
 private_byte 8 uimsbf
 }
}

32

8.2.1 Semantic definition of fields in splice_descriptor()

splice_descriptor_tag - This 8 bit number defines the syntax for the private bytes that make up the body
of this descriptor. The descriptor tags are defined by the owner of the descriptor, as registered using the
identifier.

descriptor_length - This 8 bit number gives the length, in bytes, of the descriptor following this field.
Descriptors are limited to 256 bytes, so this value is limited to 254.

identifier - The identifier is a 32-bit field as defined in ISO/IEC 13818-1 [C3], section 2.6.8 and 2.6.9,
for the registration_descriptor() format_identifier. Only identifier values registered and recognized by
SMPTE Registration Authority, LLC should be used. Its use in this descriptor shall scope and identify
only the private information contained within this descriptor. This 32 bit number is used to identify the
owner of the descriptor. The code 0x43554549 (ASCII “CUEI”) for descriptors defined in this
specification has been registered with SMPTE.

private_byte - The remainder of the descriptor is dedicated to data fields as required by the descriptor
being defined.

8.3 Specific Splice Descriptors

8.3.1 avail_descriptor()

The avail_descriptor is an implementation of a splice_descriptor. It provides an optional extension to
the splice_insert() command that allows an authorization identifier to be sent for an avail. Multiple
copies of this descriptor may be included by using the loop mechanism provided. This identifier is
intended to replicate the functionality of the cue tone system used in analog systems for ad insertion.
This descriptor is intended only for use with a splice_insert() command, within a splice_info_section.

Table 8-3. avail_descriptor()

Syntax Bits Mnemonic
avail_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 provider_avail_id 32 uimsbf
}

8.3.1.1 Semantic definition of fields in avail_descriptor()
splice_descriptor_tag - This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x00.

descriptor_length - This 8-bit number gives the length, in bytes, of the descriptor following this field.
The descriptor_length field shall have a value of 0x08.

33

identifier - This 32-bit number is used to identify the owner of the descriptor. The identifier shall have
a value of 0x43554549 (ASCII “CUEI”).

provider_avail_id - This 32-bit number provides information that a receiving device may utilize to alter
its behavior during or outside of an avail. It may be used in a manner similar to analog cue tones. An
example would be a network directing an affiliate or a headend to black out a sporting event.

8.3.2 DTMF_descriptor()

The DTMF_descriptor() is an implementation of a splice_descriptor. It provides an optional extension
to the splice_insert() command that allows a receiver device to generate a legacy analog DTMF
sequence based on a splice_info_section being received.

Table 8-4. DTMF_descriptor()

Syntax Bits Mnemonic
DTMF_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 preroll 8 uimsbf
 dtmf_count 3 uimsbf
 reserved 5 bslbf
 for(i=0; i<dtmf_count; i++) {
 DTMF_char 8 uimsbf
 }
}

8.3.2.1 Semantic definition of fields in DTMF_descriptor()
splice_descriptor_tag - This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x01.

descriptor_length - This 8-bit number gives the length, in bytes, of the descriptor following this field.

identifier - This 32-bit number is used to identify the owner of the descriptor. The identifier shall have
a value of 0x43554549 (ASCII “CUEI”).

preroll - This 8-bit number is the time the DTMF is presented to the analog output of the device in
tenths of seconds. This gives a preroll range of 0 to 25.5 seconds. The splice info section shall be sent
at least two seconds earlier then this value. The minimum suggested preroll is 4.0 seconds.

dtmf_count - This value of this flag is the number of DTMF characters the device is to generate.

DTMF_char - This is an ASCII value for the numerals ‘0’ to ‘9’, ‘*’, ‘#’. The device shall use these
values to generate a DTMF sequence to be output on an analog output. The sequence shall complete
with the last character sent being the timing mark for the preroll.

34

8.3.3 segmentation_descriptor()

The segmentation_descriptor() is an implementation of a splice_descriptor(). It provides an optional
extension to the time_signal() and splice_insert() commands that allows for segmentation messages to
be sent in a time/video accurate method. This descriptor shall only be used with the time_signal(),
splice_insert() and the splice_null() commands. The time_signal() or splice_insert() message should be
sent at least once a minimum of 4 seconds in advance of the signaled splice_time() to permit the
insertion device to place the splice_info_section() accurately.

Devices that do not recognize a value in any field shall ignore the message and take no action.

Table 8-5. segmentation_descriptor()

Syntax Bits Mnemonic

segmentation_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 segmentation_event_id 32 uimsbf
 segmentation_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if(segmentation_event_cancel_indicator == ‘0’) {
 program_segmentation_flag 1 bslbf
 segmentation_duration_flag 1 bslbf
 delivery_not_restricted_flag 1 bslbf
 if(delivery_not_restricted_flag == ‘0’) {
 web_delivery_allowed_flag 1 bslbf
 no_regional_blackout_flag 1 bslbf
 archive_allowed_flag 1 bslbf
 device_restrictions 2 bslbf
 } else {
 reserved 5 bslbf
 }
 if(program_segmentation_flag == ‘0’) {
 component_count 8 uimsbf
 for(i=0;i<component_count;i++) {
 component_tag 8 uimsbf
 reserved 7 bslbf
 pts_offset 33 uimsbf
 }
 }
 if(segmentation_duration_flag == ‘1’)
 segmentation_duration 40 uimsbf
 segmentation_upid_type 8 uimsbf
 segmentation_upid_length 8 uimsbf
 segmentation_upid()
 segmentation_type_id 8 uimsbf
 segment_num 8 uimsbf
 segments_expected 8 uimsbf
 }
}

8.3.3.1 Semantic definition of fields in segmentation_descriptor()

35

splice_descriptor_tag - This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x02.

descriptor_length - This 8-bit number gives the length, in bytes, of the descriptor following this field.

identifier - This 32-bit number is used to identify the owner of the descriptor. The identifier shall have
a value of 0x43554549 (ASCII “CUEI”).

segmentation_event_id - A 32-bit unique segmentation event identifier. Only one occurrence of a given
segmentation_event_id value shall be active at any one time. See discussion in Section 8.3.3.2
(below).

segmentation_event_cancel_indicator - A 1-bit flag that when set to ‘1’ indicates that a previously
sent segmentation event, identified by segmentation_event_id, has been cancelled. The
segmentation_type_id does not need to match between the original/cancelled segmentation event
message and the message with the segmentation_event_cancel_indicator true. Once a segmentation
event is cancelled the segmentation_event_id may be reused for content identification or to start a new
segment.

program_segmentation_flag - A 1-bit flag that should be set to ‘1’ indicating that the message refers to
a Program Segmentation Point and that the mode is the Program Segmentation Mode whereby all
PIDs/components of the program are to be segmented. When set to ‘0’, this field indicates that the mode
is the Component Segmentation Mode whereby each component that is intended to be segmented will be
listed separately by the syntax that follows. The program_segmentation_flag can be set to different
states during different descriptors messages within a program.

segmentation_duration_flag - A 1-bit flag that should be set to ‘1’ indicating the presence of
segmentation_duration field. The accuracy of the start time of this duration is constrained by the
splice_command_type specified. For example, if a splice_null() command is specified the precise
position in the stream is not deterministic.

delivery_not_restricted_flag –When this bit has a value of ‘1’ the next five bits are reserved. When
this bit has the value of ‘0’ the following additional information bits shall have the meanings defined
below. This bit and the following five bits are provided to facilitate implementations that use methods
that are out of scope of this standard to process and manage this segment.

web_delivery_allowed_flag – This bit shall have the value of ‘1’ when there are no restrictions with
respect to web delivery of this segment. This bit shall have the value of ‘0’ to signal that restrictions
related to web delivery of this segment are asserted.

no_regional_blackout_flag –This bit shall have the value of ‘1’ when there is no regional blackout of
this segment. This bit shall have the value of ‘0’ when this segment is restricted due to regional blackout
rules.

36

archive_allowed_flag –This bit shall have the value of ‘1’ when there is no assertion about recording
this segment. This bit shall have the value of 0 to signal that restrictions related to recording this
segment are asserted.

device_restrictions – See Table 8-6 for the meaning of this syntax element. This field signals three pre-
defined groups of devices. The population of each group is independent and the groups are non-
hierarchical. The delivery and format of the messaging to define the devices contained in the groups is
out of the scope of this standard.

Table 8-6. device_restrictions

Segmentation Message device_restrictions
Restrict Group 0 00

Restrict Group 1 01

Restrict Group 2 10

None 11

Restrict Group 0 – This segment is restricted for a class of devices defined by an out of band
message that describes which devices are excluded.

Restrict Group 1 – This segment is restricted for a class of devices defined by an out of band
message that describes which devices are excluded.

Restrict Group 2 – This segment is restricted for a class of devices defined by an out of band
message that describes which devices are excluded.

None – This segment has no device restrictions.

component_count - An 8-bit unsigned integer that specifies the number of instances of elementary PID
stream data in the loop that follows. Components are equivalent to elementary PID streams.

component_tag - An 8-bit value that identifies the elementary PID stream containing the Segmentation
Point specified by the value of splice_time() that follows. The value shall be the same as the value used
in the stream_identification_descriptor() to identify that elementary PID stream. The presence of this
field from the component loop denotes the presence of this component of the asset.

pts_offset - A 33 bit unsigned integer that shall be used by a splicing device as an offset to be added to
the pts_time in the time_signal() message to obtain the intended splice time(s). When this field has a
zero value, then the pts_time field(s) shall be used without an offset. If splice_time()
time_specified_flag = 0 or if the command this descriptor is carried with does not have a splice_time()
field, this field shall be used to offset the derived immediate splice time.

segmentation_duration - A 40 bit unsigned integer that specifies the duration of the segment in terms
of ticks of the program’s 90 kHz clock. It may be used to give the splicer an indication of when the
segment will be over and when the next segmentation message will occur. Must be 0 for end messages.

37

segmentation_upid_type - A value from the following table. There are multiple types allowed to
insure that programmers will be able to use an id that their systems support. It is expected that the
consumers of these ids will have an out-of-band method of collecting other data related to these numbers
and therefore they do not need to be of identical types. These ids may be in other descriptors in the
program and, where the same identifier is used (ISAN for example), it shall match between programs.

Table 8-7. segmentation_upid_type

segmentation_upid_type

segmentation_upid_length
 (Bytes)

segmentation_upid()
(Name)

Description

0x00 0 Not Used The segmentation_upid is not defined and is not
present in the descriptor.

0x01 variable User Defined Deprecated: use type 0x0C; The
segmentation_upid does not follow a standard
naming scheme.

0x02 8 ISCI Deprecated: use type 0x03 8 characters; 4 alpha
characters followed by 4 numbers.

0x03 12 Ad-ID Defined by the Advertising Digital
Identification, LLC group. 12 characters; 4
alpha characters (company identification prefix)
followed by 8 alphanumeric characters.

0x04 32 UMID SMPTE 330M

0x05 8 ISAN Deprecated: use type 0x06 ISO 15706 binary
encoding.

0x06 12 ISAN Formerly known as V-ISAN. ISO 15706-2
binary encoding (“versioned” ISAN).

0x07 12 TID Tribune Media Systems Program identifier. 12
characters; 2 alpha characters followed by 10
numbers.

0x08 8 TI Turner Identifier

0x09 variable ADI CableLabs metadata identifier as defined in
Section 8.3.3.2

0x0A 12 EIDR An EIDR represented in Compact Binary
encoding as defined in Section 2.1.1 in EIDR ID
Format (see www.eidr.org)

0x0B variable ATSC Content
Identifier

ATSC_content_identifier() structure as defined
in ATSC A57/B.

0x0C variable MPU() Managed Private UPID structure as defined in
section 8.3.3.3

0x0D variable MID() Multiple UPID types structure as defined in
section 8.3.3.4

0x0E-0xFF variable Reserved Reserved for future standardization.

segmentation_upid_length - Length in bytes of segmentation_upid() as indicated by Table 8-7.

segmentation_upid() - Length and identification from Table 8-7. This structure’s contents and length
are determined by the segmentation_upid_type and segmentation_upid_length fields. An example
would be a type of 0x06 for ISAN and a length of 12 bytes. This field would then contain the ISAN
identifier for the content to which this descriptor refers.

38

segmentation_type_id - The 8 bit value shall contain one of the values in Table 8-8 to designate type of
segmentation. All unused values are reserved. When the segmentation_type_id is 0x01 (Content
Identification), the value of segmentation_upid_type shall be non-zero.

Table 8-8. segmentation_type_id

Segmentation Message Segmentation_type_id segment_num segments_expected
Not Indicated 0x00 0 0

Content Identification 0x01 0 0

Program Start 0x10 1 1

Program End 0x11 1 1

Program Early Termination 0x12 1 1

Program Breakaway 0x13 1 1

Program Resumption 0x14 1 1

Program Runover Planned 0x15 1 1

Program Runover Unplanned 0x16 1 1

Program Overlap Start 0x17 1 1

Chapter Start 0x20 Non-zero Non-zero

Chapter End 0x21 Non-zero Non-zero

Provider Advertisement Start 0x30 0 or Non-zero 0 or Non-zero

Provider Advertisement End 0x31 0 or Non-zero 0 or Non-zero

Distributor Advertisement Start 0x32 0 or Non-zero 0 or Non-zero

Distributor Advertisement End 0x33 0 or Non-zero 0 or Non-zero

Placement Opportunity Start 0x34 0 or Non-zero 0 or Non-zero

Placement Opportunity End 0x35 0 or Non-zero 0 or Non-zero

Unscheduled Event Start 0x40 0 0

Unscheduled Event End 0x41 0 0

Note: Only one Program Overlap Start is allowed to be active at a time. A Program End shall occur
before a subsequent Program Overlap Start can occur.

segment_num - This field provides identification for a specific chapter or advertisement within a
segmentation_upid(). This value, when utilized, is expected to reset to one for the first chapter in a
new viewing event. This field is expected to increment for each new segment (such as a chapter). The
value of this field shall be as indicated in Table 8-8.

segments_expected - This field provides a count of the expected number of individual segments (such
as chapters) within the current segmentation event. The value of this field shall be as indicated in Table
8-8.

39

8.3.3.2 Cablelabs metadata identifier
When the value of segmentation_upid_type is 0x09 (ADI), it shall have the abbreviated syntax of
<element>:<identifier>. The variable <element> shall take only the values “PREVIEW”, “MPEG2HD”,
“MPEG2SD”, “AVCHD”, “AVCSD”, “SIGNAL”, “PO” (PlacementOpportunity) and “OTHER”.

For Cablelabs metadata 1.1 the variable <identifier> shall take the form <providerID>/<assetID>, the
variables <providerID> and <assetID> shall be as specified in MD-SP-CONTENT1.1-C01-120803
Sections 5.3.1 for Movie or 5.5.1 for Preview represented as 7-bit printable ASCII characters (values
ranging from 0x20 (space) to 0x7E (tilde)).

Cablelabs metadata 3.0 provides compatibility with this identifier model as described in MD-SP-
CONTENTv3.0-I01-100812 Section 6.11.1. For Cablelabs metadata 3.0 the variable <identifier> shall
be a URI conforming to RFC 3986.

Any specifics on the systems that will ingest and process this information are out of scope of this
standard.

8.3.3.3 MPU() definition and semantics

Table 8-9. MPU()

Syntax Bits Mnemonic

MPU() {

format_identifier 32 uimsbf

private_data N*8 uimsbf

}

format_identifier – A 32-bit unique identifier as defined in ISO/IEC 13818-1 and registered
with the SMPTE Registration Authority, http://www.smpte-ra.org .

private_data – A variable length, byte-aligned, set of data as defined by the registered owner of
the format_identifier field value. The length is defined by the segmentation_upid_length, which
includes the format_identifier field length.

http://www.smpte-ra.org/

40

8.3.3.4 MID() definition and semantics

Table 8-10. MID()

Syntax Bits Mnemonic

MID() {

for (i=0; i<N; i++) {

 segmentation_upid_type 8 uimsbf

 length 8 uimsbf

 segmentation_upid N*8 uimsbf

}

}

segmentation_upid_type – As defined above.

length – segmentation_upid_length for the following segmentation_upid .

segmentation_upid – segmentation_upid according to segmentation_upid_type as defined in
Table 8-7.

Note: The number of segmentation_upid’s present (“N”) is not explicitly signaled. It is
discovered by repeatedly parsing the fields above until segmentation_upid_length is exhausted.

8.3.3.5 Segmenting Content - Additional semantics
One use of this descriptor is to signal content Segments. Segments are expected to have a logical
hierarchy consisting of programs (highest level), chapters, and advertisements (refer to Table 8-8,
above). Provider and distributor advertisements share the lowest logical level and should not overlap.

For the purposes of defining the semantics stated in this document section, the following definition
applies:
Segment - Shall be either a Program, a Chapter, a Provider Advertisement, a Distributor Advertisement,
or an Unscheduled Event as listed in Table 8-7, segmentation_type_id. Occurrences of the
segmentation_descriptor() that support Segments typically occur in pairs. The valid pairings are:
- Program start/end – Program end can be overridden by Program Early Termination
- Program breakaway/resumption
- Chapter start/end
- Provider advertisement start/end
- Distributor advertisement start/end
- Unscheduled_event_start/end

41

The following segmentation_types (from Table 8-8) also support Segments but are not paired:
- Program Runover Planned
- Program Runover Unplanned

The following segmentation_types (from Table 8-8) are outside of the scope of this document section.
They are not considered to support Segments (Segmenting Content):
- Not Indicated
- Content Identification

Descriptors should normally be paired, once for a given Segment start and then for Segment end. Each
Segment end usage may be followed by another Segment start of the same logical level Segment. Refer
to Section 8.3.3.3 (Programs) and Section 8.3.3.4 (Chapters) for additional semantics. When a
Segment’s duration is provided, and that duration expires without a Segment end being signaled, then
the value of segmentation_event_id may be reused if appropriate. Such inferred Segment end cases are
not to be encouraged and should not be used.

In order to associate different types of segmentation constructs (such as associating Program level
constructs with Chapter level constructs) the same segmentation_upid() may be used in the associated
constructs. This however is not required.

The semantics of the fields within the segmentation_descriptor() for segmenting content are as follows:

segmentation_event_id - When a Segment start is signaled, the segmentation_event_id value becomes
active. While active this value shall not be used to identify other segmentation events. When a Segment
end is signaled, the segmentation_event_id value shall match the segment start segmentation_event_id
value and this value then becomes inactive and hence able to be used again for a new
segmentation_descriptor() occurrence including non-Segment usage such as Content Identification.

program_segmentation_flag - Shall be set to ‘1’.

segmentation_duration_flag - If set to ‘1’, a valid segmentation_duration shall be included in the
descriptor. If segmentation_type_id is set to 0x10 (Program Start) then this flag may be set to ‘0’.

segment_num - Shall be set to non-zero values for Chapters ranging from one to the value of
segments_expected. For Program segments, this value shall be set to one. This field may be optionally
utilized for Advertisements in the same manner as Chapters.

segments_expected Shall be set to a non-zero value, providing the number of Chapters (and optionally
Advertisements) in the program. For Program segments, this value shall be set to one.

8.3.3.6 Programs - Additional semantics
When signaled, a Program shall begin with a segmentation_descriptor() containing a
segmentation_type_id value of 0x10 (Program Start). The Program shall utilize a single and unique

42

value for segmentation_event_id in all descriptors that pertain to this Program. The usage of a
segmentation_upid() is optional but, if used, its value must be uniquely assigned to this Program and
not shared by Programs that are embedded within this Program. A Program shall end with a
segmentation_descriptor() containing a segmentation_type_id value of 0x11 (Program End) or 0x12
(Program Early Termination).

The following segmentation messages shall only occur between the Program Start and Program end
(Program End or Program Early Termination): Program Breakaway (segmentation_type_id value of
0x13); Program Resumption (segmentation_type_id value of 0x14); Program Runover Planned
(segmentation_type_id value of 0x15); or Program Runover Unplanned (segmentation_type_id value
of 0x16). A Program Resumption may only follow a Program Breakaway. A program may be ended
while in a Program Breakaway state.

Following a Program Breakaway, another Program Start to Program End sequence may occur, with new
values of segmentation_event_id and segmentation_upid(). An entire embedded Program or
Segments of an embedded Program shall be situated only between a Program Breakaway and a Program
Resumption. Multiple instances of embedded Programs may occur. Note: Program Runover messages
are asynchronous notifications and may occur at any time between the start and end of the program
including within another embedded active program.

If provided the segmentation_duration is considered from the splice_time() of the time_signal command,
if time is present, or from the time the message is received. The duration clock continues to increment
during Program Breakaways. Segmentation_duration can be extended using a Runover Planned or
Runover Unplanned message. The value supplied in the new message is an update to the overall
duration of the program and represents the elapsed time from the effective moment of the new message
to the end of the segment. It is not an addition of elapsed time. If segmentation_duration is specified,
when the duration is exceeded the program shall be considered terminated.

If at Program start a duration is not provided, a duration may be provided at a later time using a Program
Runover Planned or Program Runover Unplanned message.

If a duration is in effect, either set at Program start or later introduced, segmentation_duration may be
set to zero by sending a Program Runover Planned or Program Runover Unplanned message with
segmentation_duration_flag set to ‘0’.

A Content Identification (value of segmentation_type_id 0x01) message with a value of
segmentation_upid() matching the currently active Program may be sent on a periodic basis to make
an implementation more robust. If sent it shall match the values of segmentation_event_id and
segmentation_upid() used in the Program related messages. This does not restrict Content
Identification messages being sent that do not match the segmentation_event_id and
segmentation_upid() used in the Program related messages.

8.3.3.7 Chapters - Additional semantics
A chapter Segment shall be introduced by a Chapter Start and ended by a Chapter End. For Chapter End,
the value of segmentation_event_id shall match the value of segmentation_event_id for Chapter Start.

43

If present, the segmentation_upid() shall be the same in both occurrences of a
segmentation_descriptor() pair.

Chapter Segments may be associated with Program segments using the same segmentation_upid() on
both Chapter and Program messages.

Chapters may overlap. Chapters may be numbered using segment_num. Segments_expected shall
indicate the expected number of chapters. Use of non-zero values for segmentation_duration on
Chapter Start is optional.

9 Encryption

9.1 Overview

The splice_info_section supports the encryption of a portion of the section in order that one may prevent
access to an avail to all except those receivers that are authorized for that avail. This chapter of the
document describes the various encryption algorithms that may be used. The encryption of the section
is optional, as is the implementation of encryption by either the creator of the message, or any receive
devices. The use of encryption is deemed optional to allow a manufacturer to ship “in-the-clear”
systems without worrying about the export of encryption technology. If encryption is included in the
system, any receive device shall implement all of the algorithms listed in this document, which allows
the creator of a splice info table to use any of the algorithms in a transmission. The use of private
encryption technology is optional, and out of the scope of this document.

9.2 Fixed Key Encryption

The encryption used with this document assumes a fixed key is to be used. The same key is provided to
both the transmitter and the receiver. The method of delivering the key to all parties is unspecified.
This document allows for up to 256 different keys to be available for decryption. The cw_index field is
used to determine which key should be used when decrypting a section. The length of the fixed key is
dependent on the type of algorithm being used. It is assumed that fixed key delivered to all parties will
be the correct length for the algorithm that is intended to be used.

9.3 Encryption Algorithms

The encryption_algorithm field of the splice_info_section is a six-bit value, which may contain one of
the values shown in Table 9-1. All Data Encryption Standard variants use a 64-bit key (actually 56 bits
plus a checksum) to encrypt or decrypt a block of 8 bytes. In the case of triple DES, there will need to
be 3 64-bit keys, one for each of the three passes of the DES algorithm. The “standard” triple DES
actually uses two keys, where the first and third keys are identical. See FIPS PUB 46-3 and FIPS PUB 81.

44

Table 9-1. Encryption Algorithm

Value Encryption Algorithm
0 No encryption
1 DES – ECB mode
2 DES – CBC mode
3 Triple DES EDE3 – ECB mode
4-31 Reserved
32-63 User private

9.3.1 DES – ECB mode

This algorithm uses the “Data Encryption Standard”, (see FIPS PUB 81), in the electronic codebook
mode.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used to
pad any extra bytes that may be required.

9.3.2 DES – CBC mode

This algorithm uses the “Data Encryption Standard”, (see FIPS PUB 81) in the cipher block chaining
mode. The basic algorithm is identical to DES ECB. Each 64-bit plaintext block is bitwise exclusive-
ORed with the previous ciphertext block before being encrypted with the DES key. The first block is
exclusive-ORed with an initial vector. For the purposes of this document, the initial vector shall have a
fixed value of zero.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used to
pad any extra bytes that may be required.

9.3.3 Triple DES EDE3 – ECB mode

This algorithm uses three 64-bit keys, each key being used on one pass of the DES-ECB algorithm. See
FIPS PUB 46-3. Every block of data at the transmit device is first encrypted with the first key, decrypted
with the second key, and finally encrypted with the third key. Every block at the receive site is first
decrypted with the third key, encrypted with the second key, and finally decrypted with the first key.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used to
pad any extra bytes that may be required.

9.3.4 User Private Algorithms

This document allows for the use of private encryption algorithms. It is not specified how the transmit
and receive devices agree on the algorithm to use for any user private code. It is also not specified as to
how coordination of private values for the encryption_algorithm field should be registered or
administered.

	NOTICE
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative References

	3 Definition of terms
	4 Abbreviations
	5 Introduction
	5.1 Splice points (Informative)
	5.2 Program Splice Points (Informative)
	5.3 Splice events (Informative)
	5.4 Content Storage Considerations (Informative)
	5.5 PID selection
	5.5.1 PID Selection (Normative)
	5.5.2 PID Selection (Informative)

	5.6 Message flow (Informative)

	6 PMT Descriptors
	6.1 Registration Descriptor
	6.1.1 Semantic definition of fields in Registration Descriptor

	6.2 Cue Identifier Descriptor
	6.2.1 Semantic definition of fields in Cue Identifier Descriptor
	6.2.2 Description of cue_stream_type usage

	6.3 Stream Identifier Descriptor
	6.3.1 Semantic definition of fields in Stream Identifier Descriptor

	7 Splice Information Table
	7.1 Overview
	7.1.1 Time Base Discontinuities

	7.2 Splice Info Section
	7.2.1 Semantic definition of fields in splice_info_section()

	7.3 Splice Commands
	7.3.1 splice_null()
	7.3.2 splice_schedule()
	7.3.2.1 Semantic definition of fields in splice_schedule()

	7.3.3 splice_insert()
	7.3.3.1 Semantic definition of fields in splice_insert()

	7.3.4 time_signal()
	7.3.4.1 Semantic definition of time_signal()

	7.3.5 bandwidth_reservation()
	7.3.6 private_command()

	7.4 Time
	7.4.1 splice_time()
	7.4.1.1 Semantic definition of fields in splice_time()

	7.4.2 break_duration()
	7.4.2.1 Semantic definition of fields in break_duration()

	7.5 Constraints
	7.5.1 Constraints on splice_info_section()
	7.5.2 Constraints on the interpretation of time
	7.5.2.1 Constraints on splice_time() for splice_insert()
	7.5.2.2 Constraints on break_duration() for splice_insert()

	8 Splice Descriptors
	8.1 Overview
	8.2 Splice Descriptor
	8.2.1 Semantic definition of fields in splice_descriptor()

	8.3 Specific Splice Descriptors
	8.3.1 avail_descriptor()
	8.3.1.1 Semantic definition of fields in avail_descriptor()

	8.3.2 DTMF_descriptor()
	8.3.2.1 Semantic definition of fields in DTMF_descriptor()

	8.3.3 segmentation_descriptor()
	8.3.3.1 Semantic definition of fields in segmentation_descriptor()
	8.3.3.2 Cablelabs metadata identifier
	8.3.3.3 MPU() definition and semantics
	8.3.3.4 MID() definition and semantics
	8.3.3.5 Segmenting Content - Additional semantics
	8.3.3.6 Programs - Additional semantics
	8.3.3.7 Chapters - Additional semantics

	9 Encryption
	9.1 Overview
	9.2 Fixed Key Encryption
	9.3 Encryption Algorithms
	9.3.1 DES – ECB mode
	9.3.2 DES – CBC mode
	9.3.3 Triple DES EDE3 – ECB mode
	9.3.4 User Private Algorithms

