
2025/01/22 07:37 1/15 Graphics Actions - managing graphic compositions

wiki.skylark.tv - https://wiki.skylark.tv/

Graphics Actions - managing graphic
compositions

Starting from software version 1.6.0 the SL NEO Media Platform supports dedicated graphics layers
for Program Channels. The number of graphics layers is configured during Program Channel module
configuration in the server's web console. the parameter is called “Graphics composition” as opposed
to “Graphics playlists” which are supposed to be controlled by by playlists composed of graphics
compositions and/or semitransparent video clips. Note, that the sum of “Graphics compositions” and
“Graphics playlists” must be equal or less than the total number of graphics layers that is specified in
the “Configure server components” dialog.

Each graphics layer can host one graphics composition at any particular time which, in turn, can
contain an arbitrary number of graphics object. Graphics object can be directly controlled by external
business logic through a set of commands. The Graphics Composition Editor (AirMgr or NewsCut)
assigns a name for every graphics object it creates. These names are used to refer to graphics object
when controlling commands are executed. There is only one namespace that is common for all
graphics compositions running at the same time in a Program Channel. This means that controlling
logic can be decoupled from actual graphics composition implementation and allows to change
graphics design and move parts of graphics composition to a different layer with no changes required
to the controlling logic.

Graphics compositions are controlled through an XML-RPC/HTTP gateway which sits on the player's
port. For each layer the port number is calculated as follows: port = 4742 + PGM*16 + PLN + N where
PGM - is the Program Channel number (zero based), PLN - the number of graphics playlists, N -
number of the graphics layer (zero based). The XML-RPC inteface is also registered as a set of actions
in the system action router, so all the commands can be triggered by play-list, capture or GPI events.

Some commands (such as “play_set_clip”) are executed asynchronously and can take some time to
complete. If you need to wait for completion of such a command before sending new commands (for
example, you may need to wait for a grpahics composition to fully load befor sending commands to
it's object) you can use this method to set a flag into asynchronous execution queue and test for it's
completion with “play_test_fence”

Implementation of some logic often requires reaction to some play-list event or actions generated by
other services. In the SL NEO Media Platform architecture actions are routed through the action router
service. To the receive actions a service needs to register with the action router service.

Supported XML-RPC methods

play_set_clip

This method can be used to set current graphics composition that is hosted
in a graphics layer.
Parameter 0 - string - url of the clip containing a graphics composition to
be set.
Parameter 1 - string - encoded list of clip param pairs
This method can be used to set current graphics composition that is hosted

Last update: 2021/12/07 06:44 api:graphics_actions https://wiki.skylark.tv/api/graphics_actions

https://wiki.skylark.tv/ Printed on 2025/01/22 07:37

in a graphics layer.

play_get_clip

This method returns url and parameterization of the currently loaded clip.
Parameters - none
Return value: - structure with the following fields:
 "clip" - string - url of the currently loaded clip
 "params" - string - parametrization of the currently loaded clip

play_set_fence

This method inserts a completion flag into asynchronous execution queue.
Parameters - none
Return value - int - flag identifier

play_test_fence

This methods test a completion flag obtained by "play_set_fence".
Parameter 0 - int - identifier of a completion flag returned by
"play_set_fence"
Return value - int - 0 if the flag hasn't been processed,
 1 if the flag has been processed and all the previous
commands
 are competed

do_effect

Parameter 0 - int - effect number to perform on the layer. Currently the
following effect codes
are supported: 0 - toggle layer visibility, 1 - show layer, 2 - hide layer.

graphics_action This method can be used to execute commands on the graphics objects. The
namespace for the graphics object is global for the whole Program Channel, so it doesn't matter which
port port this command is sent to. All graphics object whose name matchs the pattern specified will
react to the command. Method parameters are passed as strings even when the command specifies a
different type. A lexical conversion is expected in such a case.

Parameter 0 - string - command name.
Parameter 1 - string - object name. object name can be specified by a
wildcard where "?" matches
 any character and "*" matches any number of any
characters.
Parameter 2 - string - first parameter to the command.
Parameter 3 - string - second parameter to the command.
......
Parameter N - string - (N-1)th parameter to the command.

graphics_multi_action This method is similar to “graphics_action” and can be used to execute a
batch of commands in one go.

2025/01/22 07:37 3/15 Graphics Actions - managing graphic compositions

wiki.skylark.tv - https://wiki.skylark.tv/

Parameter 0 - array - array of arrays of parameters for the actions. Each
subarray has the
 same structure as in "graphics_action"

graphics_get_state This method allows to query current list of loaded graphics compositions as well
as object lists for these compositions.

Parameters - none
Return value - array<AVGraphicsStateInfo> - array of states for all
currently loaded
 graphics compositions

Structure AVGraphicsStateInfo has the following fields:

 "name" - string - name of a graphics composition (title field of the clip
through which this
 composition was loaded)
 "id" - string - id of a grpahics composition set through clip parameter
"composition_id"
 "elems" - array<AVGraphicsElemStateInfo> - element list for the
composition
Structure AVGraphicsElemStateInfo has the following fields:
 "name" - string - name of the element
 "type" - string - type of the element. The following types are defined:
"PIP Frame",
 "Text Area", "Text Counter", "Text Feed", "Rect" and
"UVMeter"
 "visible" - int - non-zero value indicated that the element currently
shown
 "empty" - int - non-zero value indicates that the element is "empty".
"Emptiness" is specially
 defined for each type of object.
 "cued" - int - amount left to play in milliseconds of the current media
 "appended" - int - duration in milliseconds of the queued media
 "modif_counter" - int - amount of modifications made to elem, only changes
for "PIP Frame", all other elem types default to 0.
 "value" - int - counter value (ms) for "Text Counter" object, all other
elem types default to 0.
"Emptiness" is defined for the following types:
"PIP Frame" - an object of this type is empty when no video is playing.
"Text Feed" - an object of this type is empty when there is no more text to
display.
For "PIP Frame" objects the "cued" duration is the duration of the media
that has been "taken"
minus what has already been played. "appended" duration is duration of the
media set with
"pip_next_clip" but has not been "taken" yet.
For "Text Feed" objects the "cued" duration is the amount of time that is
left for the
current text object and the "appended" duration for the queued text objects.

Last update: 2021/12/07 06:44 api:graphics_actions https://wiki.skylark.tv/api/graphics_actions

https://wiki.skylark.tv/ Printed on 2025/01/22 07:37

Unlike the
"cued" duration "appended" doesn't include time needed to travel across the
display area
for scrolling or crawling feeds.

graphics_get_text_metrics

Parameters:
Parameter 0 - string - name of the text feed object
Parameter 1 - string - text to be meassured
Return value - array<AVGraphicsTextMetrics> - array of text metrics for all
currently loaded
 graphics compositions
containing a text feed
 with the name specified.
Structure AVGraphicsTextMetrics has the following fields:
 "name" - string - name of a graphics composition (title field of the clip
through which this
 composition was loaded)
 "width" - int - width of the text in pixels.
 "height" - int - height of the text in pixels.
 "duration" - int - Duration in millisecond that will take this text to be
played. For
 scrolling and crawling compositions this duration is
the time needed
 for the text to appear and doesn't include the time
needed to travel
 across the screen.

lookup_media

Parameter 0 - string - media object uri
Parameter 1 - int - optional debug flag. When non-zero the server side dumps
the result of look up into the logs
Return value: - structure with the following fields:
 "exists" - int - 1 if a media object corresponding to uri is found and 0
otherwise
 "width" - int - width of the media in pixels
 "height" - int - height of the media in pixels
 "frame_time" - double - frame duration of the media in seconds
 (-1 for still images, 0.01 for audio only)
 "in_point" - int - in point of the media in frames
 "duration" - int - out point minus in point of the media in frames
 (-1 for infinite streams/clips or still images)
 "length" - int - total duration of the media in frames regardless of
in/out points
 (-1 for infinite streams/clips or still images)
 "sample_rate" - int - audio sample rate in samples per second
 "channels" - int - number of audio channels
 "lead_out" - int - lead out duration in frames.

2025/01/22 07:37 5/15 Graphics Actions - managing graphic compositions

wiki.skylark.tv - https://wiki.skylark.tv/

 "title" - string - Title field of the media asset
 "type" - string - Type field of the media asset
 "comment" - string - Comment field of the media asset
 "src_name" - string - Source name field of the media asset
 "layer" - string - Layer field of the media asset
 "user_0" to "user_7" - string - User fields of the media asset
 "clip_params" - array<string> - array of available graphics param fields

purge_media_at

Parameter 0 - string - media url or media id
Parameter 1 - int - julian day at the end of which the media will be purged
Return value: none

purge_media

Parameter 0 - string - media url or media id
Return value: none

 Graphics object commands and their parameters.

object_set_transition

Sets effect type and duration when the object is hidden/shown.

Command format: object_set_transition <name> [effect] [dur]

Parameters:
 [effect] - string - transition effect name. Possible values:
 "fade" - object's opacity gradually increases/decreases.
 "cut" - object's shows up/hides instantly.
 [dur] - integer - duration of the transition in milliseconds.

object_show

Makes the object to show up after [delay] milliseconds. The command clears “hide_empty” flag.

Command format: object_show <name> [delay] [effect] [dur]

Parameters:
 [delay] - integer - time in millisecond after which the show up effect is
started.
 [effect] - string - transition effect name. Possible values:
 "fade" - object's opacity gradually increases.
 "cut" - object's shows up instantly.
 [dur] - integer - duration of the transition in milliseconds.

object_hide

Makes the object to hide itself after [delay] milliseconds. The command clears “hide_empty” flag.

Last update: 2021/12/07 06:44 api:graphics_actions https://wiki.skylark.tv/api/graphics_actions

https://wiki.skylark.tv/ Printed on 2025/01/22 07:37

Command format: object_hide <name> [delay] [effect] [dur]

Parameters:
 [delay] - integer - time in millisecond after which the hide effect is
started.
 [effect] - string - transition effect name. Possible values:
 "fade" - object's opacity gradually decreases.
 "cut" - object's hides itself instantly.
 [dur] - integer - duration of the transition in milliseconds.

object_toggle

Makes the object to show up if it's hidden or hide itself if it's shown. The command clears
“hide_empty” flag.

Command format: object_toggle <name> [delay] [effect] [dur]

Parameters:
 [delay] - integer - time in millisecond after which the show up/hide
effect is started.
 [effect] - string - transition effect name. Possible values:
 "fade" - object's opacity gradually increases/decreases.
 "cut" - object's shows up/hides itself instantly.
 [dur] - integer - duration of the transition in milliseconds.

object_hide_empty

Sets the object's “hide_empty” state. When “hide_empty” state is set the graphics engine monitors
the “empty_state” of the object. When the object is found to be in the “empty_state” for the <delay>
specified all the object specified on the hide list are automatically hidden. Different graphics object
implement their “empty_state” according to the nature of the object. As of now the following object
implement “empty_state” functions:

 "Picture in picture" - the empty state is signaled when no video clip is
currently taken
 for playback.
 "Text feed" - the empty state is signaled when there is no more text to be
displayed.

Command format: object_hide_empty <name> <delay> <name1[,name2[,...]]>
[effect] [dur]

Parameters:
 <delay> - integer - time in millisecond that the object has to be found in
the "empty_state".
 <hide_list> - string - coma-separated list of object name masks to be
hidded.
 [effect] - string - transition effect name. Possible values:
 "fade" - object's opacity gradually increases/decreases.
 "cut" - object's shows up/hides itself instantly.

2025/01/22 07:37 7/15 Graphics Actions - managing graphic compositions

wiki.skylark.tv - https://wiki.skylark.tv/

 [dur] - integer - duration of the transition in milliseconds.

object_move

Moves the object by <dx>/<dy> pixel in [dur] milliseconds.

Command format: object_move <name> <dx> <dy> [dur]

Parameters:
 <dx> - integer - horizontal offset in pixels.
 <dy> - integer - vertical offset in pixels.
 [dur] - integer - time in milliseconds required to move the object.

object_scale

Changes the object's size by <dw>/<dh> pixels in [dur] milliseconds.

Command format: object_scale <name> <dw> <dh> [dur]

Parameters:
 <dw> - integer - horizontal size delta.
 <dh> - integer - vertical size delta.
 [dur] - integer - time in milliseconds required to scale the object.

object_set_geometry

Changes the object's position and size in [dur] milliseconds.

Command format: object_set_geometry <name> <x> <y> <w> <h> [dur]

Parameters:
 <x> - integer - horizontal position of the top left corner. (uses current
X if at empty string is given)
 <y> - integer - vertical position of the top left corner. (uses current Y
if at empty string is given)
 <w> - integer - width of the object. (uses current W if at empty string is
given)
 <h> - integer - height of the object. (uses current H if at empty string
is given)
 [dur] - integer - time in milliseconds required to transform the object.

object_set_opacity

Changes the object's opacity in [dur] milliseconds.

Command format: object_set_opacity <name> <opct> [dur]

Parameters:
 <opct> - integer - opacity of the object where 0 means fully transparent
object and
 100 means fully opaque object.

Last update: 2021/12/07 06:44 api:graphics_actions https://wiki.skylark.tv/api/graphics_actions

https://wiki.skylark.tv/ Printed on 2025/01/22 07:37

 [dur] - integer - time in milliseconds required to change the object's
opacity.

object_raise

Brings the object to the front in the graphics composition.

Command format: object_raise <name>

Parameters: none

pip_set_clip

Sets a new clip for a Picture in picture insertion object. All previously appended clips are purged from
the queue.

Command format: pip_set_clip <name> <uri|EMPTY> [loop] [in_point]
[out_point] [clip_params]

Parameters:
 <uri|EMPTY> - string - url of a clips to be set for this PIP object.
Special value "EMPTY"
 will set a fully transparent clip as the current
clip.
 [loop] - boolean - if "1"/"true"/"yes" then the duration of the clip will
be infinite and
 the contents will be loopped if needed. The default is
true".
 [in_point] - integer - The in point in frames. If not specified the in
point is taken
 from the media.
 [out_point] - integer - The out point in frames. If not specified the out
point is taken
 from the media.
 [clip_params] - string - encoded list of clip param pairs

Note that special optimization takes place if the same uri is specified in consequtive calls and the
media will not be reused. To display a single frame from a clip the out_point should be one frame
greater that the in point.

pip_next_clip

Appends a new clip to the playback queue of a Picture in picture insertion object. If autostart flag is
not set all previously append clips that have not been “taken” will be purged from the queue. The clip
will be inactive and will not appear on playout until it is “taken” by “pip_take” command.

Command format: pip_next_clip <name> <uri|EMPTY> [loop] [autostart]
[in_point] [out_point] [clip_params]

Parameters:
 <uri|EMPTY> - string - url of a clips to be appended for this PIP object.

2025/01/22 07:37 9/15 Graphics Actions - managing graphic compositions

wiki.skylark.tv - https://wiki.skylark.tv/

Special value "EMPTY"
 will append a fully transparent clip.
 [loop] - boolean - if "1"/"true"/"yes" then the duration of the clip will
be infinite and
 the contents will be loopped if needed. The default
value is "true".
 [autostart] - boolean - if "1"/"true"/"yes" then this clip will
automatically start when the
 previous clip finishes. The default value is
"false". Transition
 for such clips is always "cut".
 [in_point] - integer - The in point in frames. If not specified the in
point is taken
 from the media.
 [out_point] - integer - The out point in frames. If not specified the out
point is taken
 from the media.
 [clip_params] - string - encoded list of clip param pairs

pip_set_transition

Sets effect for transition between clips in PIP objects.

Command format: pip_set_transition <name> [cut|vmix|xmix|over] [dur]
[params]

Parameters:
 [cut|vmix|xmix|over] - string - transition type
 [dur] - int - transition duration in milliseconds
 [params] - string - parameters for the transition. The following
parameters are implemented:
 "vmix":
 "wipe=URL" - the url should refer to a still image resource.
 "fade_alpha" - makes vmix to fade to zero alpha.
 "#RRGGBB" - make vmix to fade to specific color.
 "xmix":
 "wipe=URL" - the url should refer to a still image resource.
 "over":
 "wipe=URL" - the url should refer to a semi-transparent video.

pip_take

Starts transition to the next clip in the playback queue that has been added with “pip_next_clip”.

Command format: pip_take <name> [cut|vmix|xmix|over] [dur] [params]

Parameters:
 [cut|vmix|xmix|over] - string - transition type
 [dur] - int - transition duration in milliseconds
 [params] - string - parameters for the transition. The following
parameters are implemented:

Last update: 2021/12/07 06:44 api:graphics_actions https://wiki.skylark.tv/api/graphics_actions

https://wiki.skylark.tv/ Printed on 2025/01/22 07:37

 "vmix":
 "wipe=URL" - the url should refer to a still image resource.
 "fade_alpha" - makes vmix to fade to zero alpha.
 "#RRGGBB" - make vmix to fade to specific color.
 "xmix":
 "wipe=URL" - the url should refer to a still image resource.
 "over":
 "wipe=URL" - the url should refer to a semi-transparent video.

pip_clear

Clears source clip and/or playback queue of a picture in pipture object.

Command format: pip_clear <name> [appended|cued|all]

Parameters:
 [appended|cued|all] - string - clips to be cleared
 "appended" - clear only appended but not taken yet clips from the
playback queue
 "cued" - clear only taken clips but keep appended clips in playback queue
 "all" - clear both the taken clips and appended to playback queue

pip_unloop

Breaks the loop of the first infinite duration clip in the playout queue. The new duration will be
calculated in such a way that no more than one duration of out_point-in_point of the clip will be
played depending on the current playout position.

Command format: pip_unloop <name> [on_empty]

Parameters:
 [on_empty] - string - the name of an object with will trigger un-loop when
it becomes empty.
 If this parameter is not specified the loop will
break immediately.

“pip_set_audio_volume”

Sets audio volume for the PIP element

Command format: pip_set_audio_volume <name> <vol_db>

Parameters:
 <vol_db> - new audio volume in DB.

txt_append

Appends a text string to the text queue of a Text Feed object. Appends a text string to the currently
displayed text when applied to a simple Text Area object.

Command format: txt_append <name> <text> [display_once] [break]

2025/01/22 07:37 11/15 Graphics Actions - managing graphic compositions

wiki.skylark.tv - https://wiki.skylark.tv/

Parameters:
 <text> - string - a UTF-8 text string to be added.
 [display_once] - boolean - when "true" the text will be displayed only
once.
 Otherwise, it will be placed to the rotation
queue.
 (Ignored for simple Text Area objects)
 [break] - boolean - when "true" clears the rotation queue before adding
the text.
 If applied to a simpe Text Area clear current text
before appending when "true".

txt_break

Clears the rotation queue of a Text Feed object. Clears current text when applied to a simple Text
Area object.

Command format: txt_break <name> [remove_current]

Parameters:
 [remove_current] - boolean - when "true" the currenlty displayed item will
be removed
 immediately as well as the qeue.
 (Ignored for simple Text Area)

txt_time_slot

Inform a text feed of how much time is avaible to display the text. Only those text strings will be
displayed that will fit into current time slot. If the time slot is too short the remaining strings will be in
waiting state and will be processed as soon as the time slot is big enough for the next string.

Command format: txt_time_slot <name> [time_available]

Parameters:
 [time_available] - int - duration of the current time slot in
milliseconds. A negative
 duration means an infite amount of time. The
default value is -1.

counter_start

Instructs a text counter object of type “External” to start counting time.

Command format: counter_start <name>

Parameters: none

counter_stop

Instructs a text counter object of type “External” to stop counting time.

Last update: 2021/12/07 06:44 api:graphics_actions https://wiki.skylark.tv/api/graphics_actions

https://wiki.skylark.tv/ Printed on 2025/01/22 07:37

Command format: counter_stop <name>

Parameters: none

counter_set_val

Sets a text counter object of type “External” to a new value.

Command format: counter_set_val <name> <value_ms> [start|stop]

Parameters:
 <value_ms> - int - new value of the text counter in milliseconds
 [start|stop] - string - "start" makes the counter to start counting,
 "stop" maked the counter to stop counting.

Text Objects Tags

Text object such as “Text Feed” support control tags embedded in the text body. This tags can be
used to control how the text will be displayed.

Control tags have the following structure: “{?TAG BODY?}”. Every tag is opened by the following
sequence of symbols - “{?” followed by the tag's body and “?}” closes the tag.

For the time being, the following tags are supported:

 - {?fg:COLOR?} - sets foreground color to COLOR
 - {?fg:?} - sets foreground color to default value (from the graphics
composition definition)
 - {?bg:COLOR?} - sets background color to COLOR
 - {?bg:?} - sets background color to default value (from the graphics
composition definition)
 - {?NAME?} - inserts a static image using "NAME" as the image url (id-only
urls can be used here)
 - {?weight:thin?} - sets font weight to THIN
 - {?weight:ultralight?} - sets font weight to ULTRALIGHT
 - {?weight:light?} - sets font weight to LIGHT
 - {?weight:normal?} - sets font weight to NORMAL
 - {?weight:medium?} - sets font weight to MEDIUM
 - {?weight:semibold?} - sets font weight to SEMIBOLD
 - {?weight:bold?} - sets font weight to BOLD
 - {?weight:extrabold?} - sets font weight to EXTRABOLD
 - {?weight:black?} - sets font weight to BLACK
 - {?slant:italic?} - sets font slant to ITALIC
 - {?slant:oblique?} - sets font slant to ITALIC
 - {?slant:normal?} - sets font slant to NORMAL
 - {?bigger?} - set font size as +1 from the current (doesn't have a
closing/default variant)
 - {?smaller?} - set font size as -1 from the current (doesn't have a
closing/default variant)
 - {?size:FACTOR?} - set font size as a multiplication FACTOR from the

2025/01/22 07:37 13/15 Graphics Actions - managing graphic compositions

wiki.skylark.tv - https://wiki.skylark.tv/

current (doesn't have a closing/default variant)

Color values may be specified by 6 or 8 hexadecimal symbols prepended with “#” (“#RRGGBB” or
“#RRGGBBAA”). HTML color names can also be used.

Example1: {?LOGO?} - this will insert a still picture with title "LOGO" from
the media database
Example2: {?fg:#ff0000?}This will be red{?fg:?}
Example3: {?bg:white?}This will be on white background{?bg:?}
Example4: {?weight:bold?}This will be bold{?weight:?}
Example5: {?slant:italic?}This will be italic{?slant:?}

Clip parameter string

Clip parameters for graphics elements parametrization are passed as a single string. The parameters
string should be formatted as a list of strings separated by the '@' character and should always
contain an even number of element interleaving parameter name and parameter value. Each '@'
character in string list is replaced by a sequence '^!' and every '^' character is replaced by a
sequence '^^'. Example:

Parameters list: ("Text Area1", "This is text @1"), ("Text Area2", "This is
text ^2")
Encoded parameter string: "Text Area1@This is text ^!1@Text Area2@This is
text ^^2"

The following parameter names are predefined: - “composition_id” - when applied, sets the id of the
composition returned by “graphics_get_state”

For PIP objects the parameter value sets the clip url list as well as their in, out and duration. The clip
list is a semicolon separater list of values in the following form:
CLIP1_URL,{VAL_IN,VAL_OUT},[IN,OUT,DUR];CLIP2_URL,[IN,OUT,DUR];CLIP3_URL,[IN,OUT,DUR] * the
{VAL_IN,VAL_OUT} part is optional and set the external counter value to clip position mapping * the
[IN,OUT,DUR] part is optional and sets the in, out and duration. [-1,-1,0] will result in pulling in,out and
duration from the

actual media definition. [-1,-1,-1] will pull in and out from the actual
media definition with the infinite duration.

Rect object parameter: The Rectangular objects accept parameters that allow to change the colors
used for differemt elements of that Rectangle. The parameter value should be a coma-separated list
of elem=#COLOR pairs. The following elem names are supported: - “fill_color” - sets the main fill color
- “fill_grad” - sets the main fill gradient type, possible values: “vert”, “hor”, “lt-rb”, “lb-rt” -
“fill_grad_color” - sets the main fill gradient color - “outline_color” - sets the outline color -
“outline_width” - sets the outline width - “outline_grad” - sets the outline gradient color, possible
values: “vert”, “hor”, “lt-rb”, “lb-rt” - “outline_grad_color” - sets the outline gradient color

Color values may be specified by 6 or 8 hexadecimal symbols prepended with “#” (“#RRGGBB” or
“#RRGGBBAA”). HTML color names can also be used.

Example: fill_color=#ff0000,fill_grad=vert,fill_grad_color=#00ff00

Last update: 2021/12/07 06:44 api:graphics_actions https://wiki.skylark.tv/api/graphics_actions

https://wiki.skylark.tv/ Printed on 2025/01/22 07:37

Action Router service

The action router service sits at port number 5454 and it accessible through XML-RPC protocol. Every
service which needs to react to actions has to register with the action router by calling “add_action”
method. Once registered the new handler can be selected in the web console configurator of an
action source service. Action parameters are always passed as strings and converted to numerical
types if the actual handler method specifies a numeric type. Actual handler method parameter are
mapped to actual action parameter according ActionParamInfo specification.

execute_action Call an action handler for the specified service. This method has the following
parameters:

Parameter 0 - string - service name
Parameter 1 - string - action name
Parameter 2 - array - array of action parameters. Each action parameter is a
string and is
 interpreted internally by an action handler.

add_action Register a new action handler with the Action Router service This method has the
following parameters:

Parameter 0 - struct ActionInfo - a structure describing a new action
handler
Return value - None.

The ActionInfo structure contains the following members:

 "name" - string - name of the action used to trigger the action by other
services.
 "server_type" - string - server type name. It's used for user's reference
only.
 "server_name" - string - server name used to trigger the action by other
services.
 "descr" - string - user visible description of the action.
 "arg_descr" - array<string> - user visible description of the action
parameters.
 "reaction_delay" - double - time in seconds needed to execute the action.
For example,
 the play-list actions are usually bound to
some particular
 event in the play-list at some point in time.
The play-list
 action generator will take this reaction delay
into account
 and emit the action "reaction_delay" seconds
earlier so that
 the actual handler completes at the proper
time.
 "handlers" - array<ActionHandlerInfo> - array of the action handler method
descriptions.

2025/01/22 07:37 15/15 Graphics Actions - managing graphic compositions

wiki.skylark.tv - https://wiki.skylark.tv/

The ActionHandlerInfo struct contains the following members:

 "host" - string - ip address of the service that handles the action.
 "port" - int - port number of the service that handles the action.
 "method" - string - XML-RPC method name that handles the action.
 "parameters" - array<ActionParamInfo> - array of actual action parameters
mapping to the
 XML-RPC method's parameters.

The ActionParamInfo struct contains the following members:

 "param_type" - string - type name of a parameter. Currently, the following
type names
 are supported:
 "int" - integer number
 "string" - utf8 string
 "param_val" - string - value specifier. When a '%X' character sequence is
encountered
 (where X can be in range '1'-'9' or 'A'-'Z') it is
substituted
 by corresponding actual action parameter. For
example, an
 action may specify just one parameter but the
handler method
 may take two parameters. In this case, one of the
parameters
 can be specified and a fixed value and the other
one as "%1"
 which will use the action's actual parameter.

From:
https://wiki.skylark.tv/ - wiki.skylark.tv

Permanent link:
https://wiki.skylark.tv/api/graphics_actions

Last update: 2021/12/07 06:44

https://wiki.skylark.tv/
https://wiki.skylark.tv/api/graphics_actions

	Graphics Actions - managing graphic compositions
	Supported XML-RPC methods
	Text Objects Tags
	Action Router service

